Antpedia LOGO WIKI资讯

俄科学家合成世界上最小发光生物分子或用于医学分析测试

据俄罗斯科学院网站报道,克拉斯诺亚尔斯克的生物物理学家利用一种叫做Metridia longa的小型桡足类海虾合成了世界上最小的发光生物分子--荧光素酶分子。其研究成果全文发表在《生物化学和生物物理研究通讯》中,在西伯利亚联邦大学网站上可检索到内容提要。据西伯利亚联邦大学研究生马莉娜·拉里奥诺娃(文章第一作者)表示,这是目前已知的最小尺度的荧光素酶,实验表明,其蛋白质具有极高的活性和极端的热稳定性。 俄科学家通过将荧光素酶的基因放入一种病毒体内,随后将病毒植入鳞翅目幼虫细胞,从而成功提取出荧光素酶蛋白。早在若干年前,俄罗斯科学院西伯利亚分院生物物理研究所的科学家就已经对荧光素酶蛋白基因进行了标识。 俄科学家声称,他们发明的制取荧光素酶分子的方法在国际上是独一无二的。据悉,荧光素酶分子可用于医学分析测试,并有望取代放射性标记的诊断方法。为此,科学家试图将蛋白质的发光光谱从蓝区移至红区,以便更有效地对肿瘤进行......阅读全文

活体生物发光成像技术的最新进展

活体动物体内光学成像(Optical in vivo Imaging)主要采用生物发光(bioluminescence)与荧光(fluorescence)两种技术。生物发光是用荧光素酶(Luciferase)基因标记细胞或DNA,而荧光技术则采用荧光报告基团(GFP、RFP, Cyt及dyes等)进

活体动物体内光学成像(四)

3. 标记细菌(1) 细菌侵染研究可以用标记好的革兰氏阳性和阴性细菌侵染活体动物, 观测其在动物体内的繁殖部位、数量变化及对外界因素的反应。(2) 抗生素药物利用标记好的细菌在动物体内对药物的反应,医药公司和研究机构可用这种成像技术进行药物筛选和临床前动物实验研究。4. 基因表达和蛋白质相互作用(1

小动物活体成像

小动物活体成像   主要采用生物发光(bioluminescence)与荧光(fluorescence)两种技术。生物发光是用荧光素酶(Luciferase)基因标记细胞或DNA,而荧光技术则采用荧光报告基团(GFP、RFP, Cyt及dyes等)进行标记。利用一套非常灵敏的光学

小动物活体成像

小动物活体成像主要采用生物发光(bioluminescence)与荧光(fluorescence)两种技术。生物发光是用荧光素酶(Luciferase)基因标记细胞或DNA,而荧光技术则采用荧光报告基团(GFP、RFP, Cyt及dyes等)进行标记。利用一套非常灵敏的光学检测仪器,让研究人员能够直

生物发光特征与应用(一)

生物发光(bioluminescence、BL)是指生物体发出的光辐射,是生物体释放能量的一种形式,这种发光现象广泛地分散在生物界中。它不依赖于有机体对光的吸收,而是一种特殊类型的化学发光,也是氧化发光的一种。生物发光的一般机制是:由细胞合成的化学物质,在一种特殊酶的作用下,使化学能转化为光能。自然

荧光素酶的作用原理及应用

荧光素酶(luciferase)是自然界中能够产生生物荧光的酶的总称。荧光素酶可以催化荧光素氧化成氧化荧光素,在荧光素氧化的过程中,会发出生物荧光。然后可以通过荧光测定仪测定荧光素氧化过程中释放的生物荧光。荧光素和荧光素酶这一生物发光体系,可以极其灵敏、高效地检测基因的表达,是检测转录因子与目的基因

荧光素酶的作用原理及应用

荧光素酶(luciferase)是自然界中能够产生生物荧光的酶的总称。荧光素酶可以催化荧光素氧化成氧化荧光素,在荧光素氧化的过程中,会发出生物荧光。然后可以通过荧光测定仪测定荧光素氧化过程中释放的生物荧光。荧光素和荧光素酶这一生物发光体系,可以极其灵敏、高效地检测基因的表达,是检测转录因子与目的基因

五种小动物活体成像专用设备特点、应用及优缺点比较 一

摘要:随着小动物成像技术的发展,活体小动物非侵袭性成像在临床前研究中发挥着越来越重要的作用。本文围绕五种小动物成像专用设备,综述其特点及主要应用,比较各种设备的优势和劣势,总结小动物活体成像设备的发展趋势。动物模型是现代生物医学研究中重要的实验方法与手段,有助于更方便、更有效地认识人类疾病的发生、发

荧光素酶的种类以及应用

在细胞和基因的微观世界中研究探索,遗传报告基因是非常有用的"可视化和量化"工具,具有广泛的应用。荧光素酶(萤光素酶)以出色的灵敏度、使用方便、可以定量检测而成为理想的报告基因。荧光素酶不是特定的分子,是一类中能催化产生生物发光的酶的统称,不同来源的荧光素酶各有特点,可催化底物发出

荧光探针研究获进展 实现单一波长激发双色荧光成像

  近日,中国科学院深圳先进技术研究院副研究员储军主持研发的新型大斯托克斯位移荧光蛋白取得突破,实现了在小鼠脑内单一波长激发双色荧光成像和高灵敏的生物发光成像。该工作以A bright cyan-excitable orange fluorescent protein facilitatesdual

活体动物体内光学成像(一)

活体动物体内光学成像主要采用生物发光与荧光两种技术。生物发光是用荧光素酶基因标记细胞或DNA,而荧光技术则采用荧光报告基团(GFP、RFP, Cy5及Cy7等)进行标记。该技术最初是由美国斯坦福大学的科学家采用了世界上最优秀的高性能CCD研发与生产制造商Roper scientific公司最

活体荧光成像系统介绍(一)

一、  技术简介活体生物荧光成像技术(in vivo bioluminescence imaging)是近年来发展起来的一项分子、基因表达的分析检测系统。它由敏感的CCD及其分析软件和作为报告子的荧光素酶(luciferase)以及荧光素(luciferin)组成。利用灵敏的检测方法,

ATP生物发光技术的发展与应用

ATP是化学物质三磷酸腺苷的简称,存在于所有的生物体中(从微生物到高等动物),ATP在细胞体内主要作用是提供能量。鉴于ATP存在于所有生物体中,利用ATP发光检测仪检测ATP,可以间接地证明生物体的存在。随着食品行业对食品卫生质量要求越来越高,而且ATP生物发光法在检测食品微生物时简单、快速且灵敏度

ATP生物发光技术的发展与应用

ATP是化学物质三磷酸腺苷的简称,存在于所有的生物体中(从微生物到高等动物),ATP在细胞体内主要作用是提供能量。鉴于ATP存在于所有生物体中,利用ATP发光检测仪检测ATP,可以间接地证明生物体的存在。随着食品行业对食品卫生质量要求越来越高,而且ATP生物发光法在检测食品微生物时简单、快速且灵敏度

ATP生物发光技术

ATP是化学物质三磷酸腺苷的简称,存在于所有的生物体中(从微生物到高等动物),ATP在细胞体内主要作用是提供能量。鉴于ATP存在于所有生物体中,利用ATP发光检测仪检测ATP,可以间接地证明生物体的存在。随着食品行业对食品卫生质量要求越来越高,而且ATP生物发光法在检测食品微生物时简单、快速且灵敏度

荧光成像与生物发光成像技术的优缺点对比

  一、荧光成像技术优点   数据来源:使用FOBI整体荧光成像系统对荧光染料Cy5标记的药物进行观察   相比生物发光成像,荧光成像技术的优势主要表现在:   1 荧光蛋白及荧光染料标记能力更强   荧光标记分子种类繁多,包括荧光蛋白、荧光染料、量子点标记等,可以对基因、蛋白、抗体、化合药

双荧光素酶报告基因测试

在用萤火虫荧光素酶定量基因表达时 ,通常采用第二个报告基因来减少实验的变化因素。但传统的共报告基因(比如CAT,β-Gal,GUS)不够便利。因为各自的测试化学,处理要求,检测特点存在差异。Promega提供一种先进的双报告基因技术,结合了萤火虫荧光素酶测试和海洋腔肠荧光素酶测试。双荧光素酶报告基因

活体生物光学成像技术的应用

  作为一项新兴的分子、基因表达的分析检测技术,在体生物光学成像已成功应用于生命科学、生物医学、分子生物学和药物研发等领域,取得了大量研究成果,主要包括: 在体监测肿瘤的生长和转移、基因治疗中的基因表达、机体的生理病理改变过程以及进行药物的筛选和评价等。   1、在体监测肿瘤的生长和转移  

活体动物体内生物发光和荧光成像技术基础原理与应用一

活体动物体内生物发光和荧光成像技术基础原理与应用简介 文章目录:一、活体生物发光成像技术二、活体动物荧光成像技术三、生物发光成像与荧光成像的比较四、活体动物可见光成像仪器原理与操作流程活体动物体内成像技术是指应用影像学方法,对活体状态下的生物过程进行组织、细胞和分子水平的定性和定量研究的技

学会这些快速检测技术,让你的菌落总数检测效率翻倍

   食品中菌落总数反映了食品在生产过程中的卫生情况,体现食品被细菌污染的程度,是做出科学卫生评价的重要指标之一。本文主要对国标法微生物检测中菌落总数测定采用的传统方法即平板计数法的注意事项进行相关的分析,并着重介绍了快速检测技术在菌落总数检测中的应用。    菌落总数检测快速检测新技术:   

菌落总数检测的注意事项与快速检测技术(二)

二、快速检测新技术 1 3M测试片快速分析技术 1.1 3M测试片快速分析技术概念   3M测试片法是一种便捷可再生水化干膜,适用于细菌和真菌的计数。 1.2 检测步骤  只需三步就可实现快速准确的测定。 1.3结果判读 ①测试片中含有一种红色指示染剂可使菌落着色,计算所

菌落总数检测的注意事项与快速检测技术

引言    食品安全事件的频频发生,使得民众对食品安全问题越来越关注。为了确保食品安全,政府部门除了要出台相关法律法规外,更为重要的是要建立起更为科学的食品安全性的检测技术。规范的检测方法是有效保障食品安全的重要环节,它要求检验数据具有更高的准确度和可信度。食品中菌落总数反映

影响小动物活体可见光成像的因素(二)

3 对于同样级别的CCD芯片来讲,信噪比的高低则对最后的成像质量更为关键,因为信噪比不仅与CCD本身有关,更与系统的整体配置和环境密切相关。下面这个公式显示了信噪比(SNR)的计算方法,从中可以看到,QE值,读出噪声和暗噪声是影响SNR的主要因素,单纯强调任何一个方面都不具有实际意义。Roper公司

常见发光免疫分析技术的比较

发光免疫分析是一种灵敏度高、特异性强、检测快速及无放射危害的分析技术。70年代末以来得到了迅速发展,目前在国际上已经实现商品化和产业化的发光免疫分析产品,基本上可以分为:化学发光、时间分辨荧光(也称时间延迟光致发光)、电化学发光(也称场致发光和电致发光)几种。   &n

常见发光免疫分析技术的比较

免疫学技术的迅速发展对精度的要求越来越高,一般的酶免检测技术已逐渐无法适应这种形势的需要。现今发展的主流已不再是用放射性同位素标记的测定方法(避免污染环境及对人体损害),而是转向于能在任何地方操作的快速均相和固相测定,最终趋向于能够检测到皮克或10负18摩尔级的、非同位素的、自动或半自动的实验室测定

活体成像中荧光色素标记细胞的方法举例

 活体光学成像(Optical in vivo Imaging)主要采用生物发光(bioluminescence)技术与荧光(fluorescence)技术。生物发光是用荧光素酶(Luciferase)基因标记细胞或DNA,今天,生物发光标记物可以标记到任何一种基因上,使对基因功能的全

活体成像中荧光色素标记细胞的方法举例

活体成像中荧光色素标记细胞的方法举例    活体光学成像(Optical in vivo Imaging)主要采用生物发光(bioluminescence)技术与荧光(fluorescence)技术。生物发光是用荧光素酶(Luciferase)基因标记细胞或D

活体成像中荧光色素标记细胞的方法

实验概要本实验以研究干细胞活体移植后的存活率为例,简介了一两种内源性荧光色素标记的实验方法。实验原理活体光学成像(Optical in vivo Imaging)主要采用生物发光(bioluminescence)技术与荧光(fluorescence)技术。生物发光是用荧光素酶(Lucifer

活体成像中荧光色素标记细胞的方法举例

  活体光学成像(Optical in vivo Imaging)主要采用生物发光(bioluminescence)技术与荧光(fluorescence)技术。生物发光是用荧光素酶(Luciferase)基因标记细胞或DNA,今天,生物发光标记物可以标记到任何一种基因上,使对基因功能的

PNAS光遗传学上的重大突破: 不需要植入式光纤了

  虽然传统的光遗传学利用微生物光敏通道蛋白来控制神经元的活动,在神经科学研究中获得了重大进展,但光纤植入大脑增加了一系列后备工作的负担,从而限制了光遗传学的应用。  光探头是必不可少的工具,通常在体内应用时需要侵入性的光纤植入,对临床应用和多个脑区的应用是重大的限制。另一方面,化学遗传学可以使用基