Antpedia LOGO WIKI资讯

Science重大成果:细胞分化的通用规则

日本RIKEN牵头的国际合作项目FANTOM(Functional Annotation of the Mammalian Genome)在本期Science杂志上发表了一项具有里程碑意义的新成果。 研究人员对不同细胞类型的RNA表达进行了广泛的分析。他们发现,当细胞经历表型改变(比如细胞分化)时,最开始活化的是增强子区域。增强子是一种重要的调控开关,一般离自己激活的基因比较远。 细胞进行分化或者应答外界刺激的时候,会发生受到严格控制的转录改变。在这一过程中有两种调控元件在起作用,位于调控基因附近的启动子,和远离调控基因的增强子。不过,人们此前并不清楚这两种元件的作用顺序,推测它们差不多同时起作用。 研究人员让19种人类细胞和14种小鼠细胞经历不同类型的改变,并在这一过程中进行检测和分析。他们发现,是增强子活化触发了一系列后续事件,最终显著改变细胞的表型。 研究显示,在细胞受到刺激后的头15分钟增强子激活,30-10......阅读全文

Cell:两项研究聚焦“超级增强子”

  近日,麻省理工白头研究所和哈佛丹娜法伯癌症研究所以及冷泉港实验室这三家知名的研究机构的科学家惊讶地发现,一组称作“超级增强子”( super-enhancer)的强有力基因调控子,它们控制了细胞的状态和特性。相关两个研究论文刊登在了近期出版的《细胞》(Cell)杂志上。   研究发现,健康

CRISPR后起之秀《Nature》最新发现20,000个平行实验”发现增强子

  最开始大家都以为是“垃圾”DNA的基因组“暗物质”近年来备受关注,增强子就是其中之一,来自加州大学旧金山分校的一组研究人员修改了现有的基因编辑CRISPR技术,用以来寻找增强子,他们的方法并不是编辑增强子,而是利用一种称为CRISPRa(CRISPR activation)的工具,搜寻影响T细胞

复旦大学Cell发布表观遗传重要发现

  来自复旦大学、哈佛医学院的研究人员在新研究中揭示,由RACK7/KDM5C复合物充当增强子“刹车”,抑制了增强子过度激活。这一重要的研究发现发布在4月7日的《细胞》(Cell)杂志上。  复旦大学的蓝斐(Fei Lan)教授与施扬(Yang Shi)教授是这篇论文的共同通讯作者。蓝斐教授的主要科

科学家尝试破解基因增强子之谜

   基因可能是细胞核中的主角,但如果没有强有力的配角阵容,它们也将永远无法发光。随着DNA调控剂(增强子)的延展,将帮助基因在正确的时间和位置启动。尽管研究人员像狗仔队追踪好莱坞明星一样详细调查了基因,增强子依然身处幕后,其工作原理仍然成谜。不过,近日举行的遗传学会议可能将改变现状:研究人员描述了

Cell子刊:谁在推动干细胞的分化

  美国凯斯西储大学的科学家们发现了多能干细胞分化的关键推手,这一突破性成果为干细胞的临床应用提供了宝贵的新线索,文章于六月五日发表在Cell旗下的Cell Stem Cell杂志上。  多能干细胞能够分化成为多种不同的细胞类型,具有修复机体损伤治疗疾病的巨大潜力。这项研究的两位资深作者,凯斯西储大

脑细胞类型中增强子遗传变异或预测精神/神经疾病风险

  可能有人认为,大多数遗传相关疾病的主要原因来自编码DNA的突变---基因组编码区域的改变可以直接导致对健康人体重要的特定蛋白的表达发生变化。但是,人类DNA的大部分是非编码DNA,即不直接翻译成功能性蛋白的DNA区域。这些非编码DNA区域包含称为增强子的调节性序列元件,这些序列元件可以改变特定蛋

Nature:CRISPRa截然不同的非编码调控序列分析技术

  来自加州大学旧金山分校的一组研究人员修改了现有的基因编辑CRISPR技术,用以来寻找增强子,他们的方法并不是编辑增强子,令其发挥作用,而是利用一种称为CRISPRa(CRISPR activation)的工具,搜寻影响T细胞免疫细胞发育的一种基因的增强子。这项研究发现将有助于解析自身免疫疾病,如

Science重大成果:细胞分化的通用规则

  本RIKEN牵头的国际合作项目FANTOM(Functional Annotation of the Mammalian Genome)在本期Science杂志上发表了一项具有里程碑意义的新成果。  研究人员对不同细胞类型的RNA表达进行了广泛的分析。他们发现,当细胞经历表型改变(比如细胞分化)

eLife:癌基因总闸与超强抗癌小鼠

  将一个与不同类型癌症相关的调节区域移除,小鼠对肿瘤的形成产生了巨大的抵抗力!  我们每个细胞内都有接近2万个基因,这些基因是维系我们身体和生存的说明书。在细胞生命周期的某个时间点上,只有部分基因需要保持活跃,每个基因的活性一直处于动态的调节状态,使细胞响应环境变化。  增强子是控制基因活性的分子

CRISPR后起之秀:“20,000个平行实验”发现增强子

  我们人体每个细胞的基因组中都有大致相同的22,000个基因,但每个细胞采用的都是这些基因的不同组合,根据不同的需求开启或关闭某个基因。就是这些基因的表达以及抑制模式决定了细胞会成为什么细胞,是肾脏细胞,脑细胞,皮肤细胞,还是心脏细胞。  要想操控这些转换模式,我们的基因中就必须有调节序列,比如“

“超级增强子”调控关键基因 科学家为其编目录

  据物理学家组织网10月10日报道,最近,美国怀特黑德生物医学研究所科学家发现了一套称为“超级增强子”的基因调控器,能控制、影响人类和小鼠的大量细胞型。研究人员指出,超级增强子富集在基因组的变异区,而这些变异区与多种疾病谱系密切相关,所以它们最终可能在疾病诊断与治疗方面发挥重要作用。相关论文在线发

Nature子刊:用CRISPR操控表观基因组

  杜克大学的研究人员开发出了一种新方法,可以精确地控制基因开启及激活的时间。借助这一新技术研究人员可通过化学操控包装DNA的蛋白,来开启特异的基因启动子和增强子——控制基因活性的基因组片段。  研究人员说,拥有操控表观基因组的能力将有助于他们探究特殊启动子和增强子在细胞命运或遗传病风险中所起的作用

计算机”课程“识别基因组调控区域

  来自约翰霍普金斯大学的研究人员成功教会了计算机如何去识别用以调控基因活性的DNA序列的共同点,并利用这些共同点预测基因组中的其它调控区域,这种新工具能帮助科学家们更好地了解疾病风险和细胞发育。这些研究成果公布在Genome Research杂志是两篇论文中。   “我们的目的是分析调控信息

“基因剪刀”—CRISPR-Cas9变“钝“为自体免疫病研究提供新启示

  我们机体细胞中含有22000个基因,但对于每个细胞来说,其常用的基因组合往往各不相同。这种基因表达与抑制的特征最终影响了细胞类型的形成,例如肾脏、大脑、皮肤、心脏等等。  为了调控这种基因表达的特征,基因组中存在很多调控元件,它们受外界信号的影响对基因的表达“开闭”进行精确地调控。其中有一类叫“

张锋Nature发布CRISPR新成果

  波士顿儿童医院癌症及血液疾病中心的研究人员发现,改变一小段DNA可以避开镰状细胞病(SCD)背后的遗传缺陷。这一发布在《自然》(Nature)杂志上的新发现,为开发出一些基因编辑方法来治疗SCD和诸如地中海贫血等其他的血红蛋白疾病开辟了一条途径。  Dana-Farber/波士顿儿童医院的Stu

Nature发布大规模癌症表观基因组研究成果

  科学家们鉴别出了有可能生成第4亚型髓母细胞瘤的细胞。新研究发现为这种最常见的脑肿瘤亚型开发出更有效的靶向疗法清除了一个障碍。他们的研究结果发布在1月27日的《自然》(Nature)杂志上。  圣犹大儿童研究医院发育神经生物学系的Paul Northcott,德国癌症研究中心(DKFZ)的Stef

基因组研究的“98K”——人工智能算法

  每个分子遗传学家都希望找到一个易于使用的程序,可以比较来自不同细胞条件的数据集,识别增强子区域,然后将其分配给目标基因。  如今,柏林马克斯·普朗克分子遗传学研究所的马丁·温格隆(Martin Vingron)领导的研究小组现已开发出一个掌握所有这些内容的程序。 “ DNA非常无聊,因为它在每个

十年探索,甲基化与癌症

  组蛋白是负责包装DNA的蛋白,DNA与组蛋白互作调节着许多基础细胞活动,例如干细胞分化或者血细胞变为白血病细胞等。上述相互作用由抑制子和激活子之间的拉锯战控制,这两种因子会通过对组蛋白进行化学修饰,告诉组蛋白包装更紧还是松开让基因表达。   在十一月十九日Genes & Devel

冷泉港科学家揭示促癌“垃圾DNA”

  来自冷泉港实验室(CSHL)的一个研究人员小组,确定了在急性髓细胞性白血病(AML)中,一种白血病特异性的增强子元件促进了癌性血细胞增殖。AML是一种毁灭性的癌症,70%的患者无法医治。此外,研究人员还提供了已进入人类临床试验的、一类有前景的新药有效阻止癌细胞生长机制的认识。   在发表于《G

DNA重组(DNA recombination)技术:外源基因的蛋白表达-2

2.包涵体的分离与纯化细胞破碎时提取细胞内产物的关键。对于细菌的裂解常用的有酶溶法、超声破碎法、化学渗透法、玻璃珠研磨等。包涵体可通过超声波、匀浆等常规的方法是菌体破碎后,离心就可得到。密度梯度离心后可得到高纯度的包涵体。包涵体一般不溶于水,为了获得可溶性的蛋白质可加入强蛋白质变性剂后使其溶解。一般

3月27日《自然》杂志精选

  REST 蛋白可抗神经退化   年龄是神经退化疾病的最大风险因素。但为什么有些人在衰老时认知功能没有变化,而其他人的认知功能则会下降并患阿尔茨海默氏症?在这项研究中,Bruce Yankner及同事发现,在衰老过程中,一种被称为REST (亦称为NRSF)的蛋白在人的皮层和海马体神经元

从全才到专家,Cell子刊揭示启动干细胞分化的蛋白团队

  生物通报道:当植物将根扎进土壤的时候,根尖形成的新细胞就要担负不同的责任,比如输送水和营养物质或者感知重力。  Duke大学的研究人员在拟南芥根部鉴定了一组DNA结合蛋白。他们在Developmental Cell杂志上发表文章指出,这些蛋白共同作用帮助前体细胞选择性读取基因组的不同部分,从而走

新一代单细胞itChIP技术解析早期胚胎细胞命运决定机制

  2019年9月3日,北京大学分子医学研究所、北大-清华生命科学联合中心何爱彬组在《Nature Cell Biology》在线发表了题为Profiling chromatin state by single-cell itChIP-seq的文章,报道了利用一种全新的普适性,易操作的单细胞ChIP

癌症耐药性是如何产生的?

  近年来,研究者们在肿瘤的预防与治疗领域取得了突破性的进展,临床上手术、放化疗以及免疫疗法的结合使用也大幅提高了患者的寿命以及生活质。然而,在很多情况下,肿瘤组织还是会出现较强的抗药性,使得治疗结果往往不佳。因此,进一步探究癌细胞的耐药性的产生以及寻找针对性的治疗方法是目前的研究热点。本期为大家带

Nature新论文再次证实“垃圾”DNA的重要性

  来自加州大学旧金山分校,麻省哈佛Broad研究院,以及耶鲁大学医学院的研究人员研发出了一种新型运算工具,能深入挖掘已有DNA数据库资料。利用这一方法,他们发现了某些DNA突变如何通过遗传传递疾病的。  这一研究成果公布在10月29日Nature杂志上。  文章通讯作者,加州大学旧金山分校Sand

NAR:科学家阐明基因调节过程中的关键表观遗传开关机制

  2016年10月16日 讯 /生物谷BIOON/ --日前,来自普渡大学的研究人员通过研究阐明了一种关键的表观遗传学机制,其或许是一种关键因子来揭示基因如何被开启和关闭,相关研究刊登于国际杂志Nucleic Acids Research上。遗传学和表观遗传机制都能够调节人类机体基因的表达,外部环

表观遗传如何让癌症在歧途越走越远?

  表观遗传学是近年来新兴的一个学科,目前研究处于快速发展阶段。越来越多的证据表明表观遗传在人体生长、发育、疾病过程中发挥着重要作用,不少研究也表明表观遗传的改变是癌症发生发展必不可少的。小编在此为大家盘点了近期关于表观遗传学与癌症的研究,与大家一起学习。  【1】Nat Genet:表观遗传变化让

Nature突破守则:干细胞基因表达新规则

  十年前,基因的表达看上去是那么的简单:基因被开启或被关闭,不能同时开启又关闭。之后时间到了2006年,一个重磅级的发现指出,在小鼠胚胎干细胞中的发育调控基因可以即激活基因,又抑制基因,这样的基因被称为“二价标记基因(bivalently marked genes)”,在发育和分化过程中可以有

中国学者首度揭示细胞癌变及抑制癌变机理

  癌症已成当下对人类生命健康最大的威胁之一。癌症究竟是怎样产生的?复旦大学7日披露,该校生物医学研究院(IBS)在国际上率先发现了导致细胞异常甚至癌变以及抑制癌变的机理。在表观遗传学领域,研究团队的创新发现在某些方面更突破了达尔文学说的局限。  据悉,该研究可为癌症的个性化治疗提供新的药物靶点和治

长链非编码RNA: 从科研到临床

   长链非编码RNA (LncRNA)是一类真核生物中长度大于200 nt的非编码RNA分子;根据其与邻近基因的位置可以分为反义lncRNA、增强子lncRNA、基因间lncRNA、双向lncRNA、和内含子lncRNA;它具有多种作用机制,比如在细胞核中作为分子支架、协助可变剪接、调节染色体结构