Antpedia LOGO WIKI资讯

高产学者Nature揭示RNA甲基化的新功能

MicroRNA(miRNA)是一类约22nt大小的内源RNA,在基因表达中起着重要的调控作用,参与了多种生理和病理过程。miRNA生成是一个复杂的过程,初级miRNA(pri-miRNA)需要经过细胞核和细胞质内的一系列加工才能形成成熟的miRNA。 整个流程的第一步是microprocessor复合体加工pri-miRNA。microprocessor复合体由RNA结合蛋白DGCR8和内切酶Drosha组成,DGCR8负责识别pri-miRNA茎环结构,然后招募DROSHA切割双链RNA,生成前体miRNA(pre-miRNA)。虽然人们对pri-miRNA加工机制研究得比较透彻,但至今还不清楚DGCR8在众多转录本二级结构中识别并结合pri-miRNA的机制。 洛克菲勒大学的研究团队发现,m6A是促进miRNA生成的关键性转录后修饰。这项研究发表在三月十八日的Nature杂志上,文章的通讯作者是洛克菲勒大学副教授S......阅读全文

Nature突破性研究—RNA甲基化新修饰 m1A

  说起近来的科研热点,RNA甲基化修饰的相关研究可以说是当前整个生命科学领域最热门的方向之一,亮点文章频出,着实让人有些目不暇接。日益增多的发表文章、特别是高分文章说明,这个领域现在正在迅速成为大家关注的焦点。RNA甲基化修饰类型很多,目前最热门的有三种,分别是:m6A RNA甲基化﹑m5C RN

Nature突破性研究—RNA甲基化新修饰 m1A

说起近来的科研热点,RNA甲基化修饰的相关研究可以说是当前整个生命科学领域最热门的方向之一,亮点文章频出,着实让人有些目不暇接。日益增多的发表文章、特别是高分文章说明,这个领域现在正在迅速成为大家关注的焦点。RNA甲基化修饰类型很多,目前最热门的有三种,分别是:m6A RNA甲基化﹑m5C RN

中国学者发表Nature Methods综述:表观转录组分析新技术

  12月29日的Nature Methods杂志公布了2016年度技术:Epitranscriptome analysis(表观转录组分析),来自北京大学生命科学学院的伊成器研究员受邀发表了题为“Epitranscriptome sequencing technologies: decoding

科学家发明单碱基分辨率测序技术:CeU-Seq

  2015年6月15日,北京大学生命科学学院伊成器研究组在《Nature Chemical Biology》杂志在线发表题为“Chemical pulldown reveals dynamic pseudouridylation of the mammalian transcriptome

Nature:RNA 修饰研究有助表观转录组学进一步发展

  这是一个与 mRNA 结合的细菌核糖体的分子模式图,该核酸蛋白复合体正在合成蛋白质。  随着科研人员逐渐揭开 RNA 修饰的奥秘,帮助我们了解表观转录组学(epitranscriptomics)的工具也变得越来越多了。  2004 年,以色列特拉维夫大学(Tel Aviv University

陈建军/杨建华/何川/黄刚 揭示RNA m6A由组蛋白修饰决定

  近年来,RNA表观遗传学的研究发现RNA甲基化修饰,特别是m6A甲基化修饰,在哺乳动物的转录组中广泛存在,并且在多种生理和病理过程中发挥着重要的生物学功能,引领了RNA以及表观遗传学领域的又一个热潮。高通量测序揭示在人和小鼠的转录组中有1/3-1/2的mRNA转录本具有m6A修饰【1,2】。理论

上海生科院解析真核生物基因表达调控的新机制

  2月29日,Nature Plants 杂志在线发表了中国科学院上海生命科学研究院植物逆境生物学研究中心何跃辉课题组(植物环境表观遗传学实验室)题为Coupling of histone methylation and RNA processing by the nuclear mRNA Cap

揭秘m6A修饰新功能 -- 调控染色质状态和转录活性

  m6A是真核生物中最常见的一类化学修饰,能够在多种生物过程中发挥重要作用,包括癌症发生发展、细胞分化、压力应答、免疫反应以及神经发育等方面。目前大部分研究主要探究m6A对蛋白编码基因的调控——即影响mRNA稳定性或翻译效率。   2020年1月17日,美国芝加哥大学何川,中科院北京基因组研究所

揭秘m6A修饰新功能 -- 调控染色质状态和转录活性

  文章导读   m6A是真核生物中最常见的一类化学修饰,能够在多种生物过程中发挥重要作用,包括癌症发生发展、细胞分化、压力应答、免疫反应以及神经发育等方面。目前大部分研究主要探究m6A对蛋白编码基因的调控——即影响mRNA稳定性或翻译效率。   2020年1月17日,美国芝加哥大学何川,中科院

研究发现长非编码RNA调控学习记忆新机制

  4月30日,《自然-通讯》(Nature Communications)杂志以研究论文形式发表了中国科学技术大学刘强研究组题为Activity dependent LoNA Regulates Translation by Coordinating rRNA Transcription and

长非编码RNA的又一重要功能:调控学习记忆

   中国科学技术大学的研究人员发表了题为“Activity dependent LoNA Regulates Translation by Coordinating rRNA Transcription and Methylation”,首次发现并命名了长非编码RNA LoNA,揭示了LoNA通过

Cell:表观遗传新关注点—mRNA修饰

  表观遗传学研究关键点是修饰DNA及其蛋白质支架的化学标记,越来越多的研究表明这些化学标记能告诉细胞,哪些基因是表达,哪些是沉默的,因而也决定了个体的表型性状。  mRNA即信使RNA,在中心法则中扮演了重要角色,但此前一些科学家们认为这种RNA只是完成传递的作用,把细胞核中编码的信息传递给蛋白翻

新的基因编辑领域突破口—表观遗传调控

  几十年来,DNA一直被认为是决定生命遗传信息的核心物质,但是近些年不断的研究表明,生命遗传信息从来就不是基因所能完全决定的,比如科学家们发现,可以在不影响DNA序列的情况下改变基因组的修饰,这种改变不仅影响个体的发育,而且还可遗传给后代。如肿瘤等多种疾病并非仅由基因突变而引起,且与DNA和组蛋白

新的基因编辑领域突破口—表观遗传调控

  几十年来,DNA一直被认为是决定生命遗传信息的核心物质,但是近些年不断的研究表明,生命遗传信息从来就不是基因所能完全决定的,比如科学家们发现,可以在不影响DNA序列的情况下改变基因组的修饰,这种改变不仅影响个体的发育,而且还可遗传给后代。如肿瘤等多种疾病并非仅由基因突变而引起,且与DNA和组蛋白

新的基因编辑领域突破口——表观遗传调控(一)

几十年来,DNA一直被认为是决定生命遗传信息的核心物质,但是近些年不断的研究表明,生命遗传信息从来就不是基因所能完全决定的,比如科学家们发现,可以在不影响DNA序列的情况下改变基因组的修饰,这种改变不仅影响个体的发育,而且还可遗传给后代。如肿瘤等多种疾病并非仅由基因突变而引起,且与DNA和组蛋白修饰

Nucleic Acids Research:脂肪生成的表观调控机制

肥胖和2型糖尿病的全球发病率在过去的30年中显著增加,已严重危害人们的生命健康。脂肪组织被认为与该类疾病相关,因此操纵脂肪细胞的分化和成熟有望用于临床治疗。大量研究已阐明转录和表观遗传(DNA和组蛋白修饰)在脂肪发生过程中的重要作用,但是对于转录后调控如何影响脂肪生成,尚不清楚。 近日,华中农业大

高产学者Nature揭示RNA甲基化的新功能

  MicroRNA(miRNA)是一类约22nt大小的内源RNA,在基因表达中起着重要的调控作用,参与了多种生理和病理过程。miRNA生成是一个复杂的过程,初级miRNA(pri-miRNA)需要经过细胞核和细胞质内的一系列加工才能形成成熟的miRNA。  整个流程的第一步是microproces

靶向干预m6A通路抑制癌细胞新策略被发现

  近日,国际期刊美国《公共科学图书馆—生物学》(PLOS Biology)在线发表了最新研究成果。该成果揭示了RNA甲基化m6A阅读器YTHDF2在细胞周期中的作用,并阐明细胞周期通过影响YTHDF2蛋白稳定性形成前馈调控回路的分子机制,为通过靶向干预m6A通路抑制癌细胞增殖提供新的策略。  论文

研究揭示RNA甲基化调控R-loop形成及转录终止机制

  R-loop是一种由RNA:DNA杂合链和单链DNA组成的特殊核酸结构,在原核和真核生物的基因组中分布广泛且普遍存在。R-loop在很多关键的生物学过程中发挥重要功能,包括染色质修饰、转录调控、DNA损伤修复以及基因组稳定性等,但其如何被精确调控的机制尚不清楚。m6A修饰作为信使RNA上丰度最高

利用ssDRIP-seqRNA揭示甲基化调控R-loop形成及转录终止机制

  R-loop是一种由RNA:DNA杂合链和单链DNA组成的特殊核酸结构,在原核和真核生物的基因组中分布广泛且普遍存在。R-loop在很多关键的生物学过程中发挥重要功能,包括染色质修饰、转录调控、DNA损伤修复以及基因组稳定性等,但其如何被精确调控的机制尚不清楚。m6A修饰作为信使RNA上丰度最高

我国科学家解析真核生物基因表达调控新机制

  中科院上海植物逆境生物学研究中心何跃辉课题组发现,染色质修饰与mRNA转录起始及加工有着相互依存关系,两者协同作用,以提高成熟mRNA及基因表达的水平。相关成果2月29日在线发表于《自然—植物学》杂志。  据了解,mRNA前体的转录起始在表观遗传学水平上受到多种转录因子以及染色质修饰与重塑的调控

Nucleic Acids Research:脂肪生成的表观调控机制

  肥胖和2型糖尿病的全球发病率在过去的30年中显著增加,已严重危害人们的生命健康。脂肪组织被认为与该类疾病相关,因此操纵脂肪细胞的分化和成熟有望用于临床治疗。大量研究已阐明转录和表观遗传(DNA和组蛋白修饰)在脂肪发生过程中的重要作用,但是对于转录后调控如何影响脂肪生成,尚不清楚。   近日,华

云序RNA修饰技术余义勋课题组植物m1A修饰调控机制的运用

  导读   RNA甲基化修饰在调控生物生长发育的过程中起重要作用,m6A和m5C在植物体内的产生机制和生物学功能已有较多研究论文发表,然而RNA m1A(N1-甲基腺嘌呤)修饰在植物中的研究还非常少。   近日,Plant Physiology 在线发表了华南农业大学余义勋课题组题为“The

一文速览丨2019年曹雪涛团队在Science,PNAS发表成果盘点

  2019年,曹雪涛团队在Science,Nature Immunology,PNAS 等杂志上发表了13篇重要研究成果,在免疫学领域取得重大进展,iNature系统盘点一下曹雪涛团队的研究成果:  【1】干扰素-γ(IFN-γ)对于细胞内细菌固有的免疫反应至关重要。 非编码RNA和RNA结合蛋白

m6A修饰新功能——调控染色质状态和转录活性

m6A是真核生物中最常见的一类化学修饰,能够在多种生物过程中发挥重要作用,包括癌症发生发展、细胞分化、压力应答、免疫反应以及神经发育等方面。目前大部分研究主要探究m6A对蛋白编码基因的调控——即影响mRNA稳定性或翻译效率。2020年1月17日,美国芝加哥大学何川,中科院北京基因组研究所韩大力和同济

RNA甲基化研究深度剖析

  一、听说最近 RNA甲基化很火,它是何方神圣?   1、高分文章频现   说起近来的科研热点,RNA甲基化修饰的相关研究可以说是当前整个生命科学领域最热门的方向之一,亮点文章频出,着实让人有些目不暇接。RNA甲基化的研究近3月发表的文章影响因子为10分以上的,就有高达 17 篇。

2018国自然研究热点二: RNA甲基化研究深度剖析

  一、听说最近 RNA甲基化很火,它是何方神圣?   1、高分文章频现   说起近来的科研热点,RNA甲基化修饰的相关研究可以说是当前整个生命科学领域最热门的方向之一,亮点文章频出,着实让人有些目不暇接。RNA甲基化的研究近3月发表的文章影响因子为10分以上的,就有高达 17 篇。   图:

Nucleic Acids Research:脂肪生成的表观调控机制

肥胖和2型糖尿病的全球发病率在过去的30年中显著增加,已严重危害人们的生命健康。脂肪组织被认为与该类疾病相关,因此操纵脂肪细胞的分化和成熟有望用于临床治疗。大量研究已阐明转录和表观遗传(DNA和组蛋白修饰)在脂肪发生过程中的重要作用,但是对于转录后调控如何影响脂肪生成,尚不清楚。近日,华中农业大学的

毛炳宇组揭示中枢去甲肾上腺素能神经元发育调控新机制

  去甲肾上腺素是外周系统一类常见且非常重要的神经递质,可引起小血管收缩和血压增加。在中枢神经系统(脑)中,也存在一群特异性以去甲肾上腺素为神经递质的神经元;这些神经元主要分布于脑干的蓝斑核(Locus Coeruleus)中,它们的轴突投射至整个脑中,调控各个脑区神经元的活性。众多证据表明,中枢去

pre-mRNA中存在的修饰及其对剪接影响

  2018年10月7日 讯 /生物谷BIOON/--日前,作为“诺贝尔奖风向标”的拉斯克奖——拉斯克·科什兰医学特殊成就奖颁给了Joan Argetsinger Steitz教授(致敬Joan Steitz!2018年拉斯克特别成就奖获得者),以表彰她在生物医学领域,尤其是RNA生物学领域中所发挥