自然状态材料中存在量子临界点

据美国物理学家组织网1月20日报道,近日,一个美日国际研究小组以镱为基础材料研制出一种奇特的新型超导体。该超导体不需要改变压力、磁场强度或经化学掺杂,在自然状态就能达到物理学家所说的“量子临界点”。这一发现突破了理论物理的限制,为人们理解量子临界状态打开了新视野。这种异常性质,也将改变人们对超导体制造、电子数据存储的理解方式。研究论文发表在1月21日的《科学》杂志上。 “量子临界点”是界定一种材料是不是超导体、如何变成超导体的一个属性评估标准,经过了这个点,材料对电流的电阻会完全消失。尽管进行过各种严密的实验和检测,科学家目前仍然无法完全理解超导材料的“量子临界点”这个关键特征。 长期以来,科学家通过给材料施加强磁场和高压,或在材料中添加某些原子杂质,转变材料性质将其“调整”到量子临界点,由此实现超导。而新研究首次在不加调整的情况下,让新材料以自然状态到达了量子临界点。 这项研究开始于200......阅读全文

超导体的三大特性

超导体的三大特性是完全导电性,完全抗磁性,通量量子化。这三大特性使得超导体非常的受关注,而且运用的空间很大。但是目前人们对超导体的研究还不是很成熟,很多方面都有一定的技术难题。比如超导体对温度的要求很高,达不到一定的温度,就不能表现出超导体完全导电的特性;超导体对磁场的要求也非常高,只有达到这个磁场

化学所等在有机超导体研究中取得进展

  1964年,美国科学家Little理论预测有机化合物具有超导电性且其超导转变温度可达到室温,激发了研究者们对有机超导体的研究热情。第一个有机超导体(TMTSF)2PF6发现于20世纪80年代,发展至今,有机超导体主要有三大类:类似(TMTSF)2PF6的有机电荷转移盐、基于碳材料的超导体、有机并

让量子现象“肉眼可见”——2025年诺贝尔物理学奖成果解读

  量子力学诞生百年之际,瑞典皇家科学院7日将2025年诺贝尔物理学奖授予约翰·克拉克、米歇尔·H·德沃雷和约翰·M·马蒂尼斯三名量子物理学家。正是他们在前人百年探索基础上的开创性发现,让我们“看见”曾只存在于微观领域的量子现象,也为新一代量子技术的发展奠定了坚实基础。  系列开创实验  量子力学以

物理所等发现自旋阻挫重费米子体系中的量子临界相

  当一个二级相变通过非温度控制的外参量被连续压制到绝对零度附近时,体系会发生量子相变。发生量子相变的临界点,即量子临界点,是绝对零度条件下位于外参量轴上的一个点,通常可以通过调控压力、磁场等手段来获得。量子相变和有限温度下由热涨落控制的相变不同,其物理本质是基于海森堡不确定原理的量子涨落行为。量子

6月6日《自然》杂志精选

  有关格陵兰和南极冰层减少速度的结论   在2007年,“政府间气候变化专门委员会”未能对冰层通过动态过程(如因冰下水文活动的变化而发生的冰加速)对海平面上升的贡献作出一个估计。这个问题,再加上来自卫星观测工作的成熟数据流,导致了大量研究工作的进行。Edward Hanna等人回顾了过去六年

更多的原子-,更好的传感器

发展现代化先进量子测量体系具有重要的研究意义,它符合时代发展需求和国际化发展潮流,同时面向国际前沿和国家重大需求。由于里德堡原子具有较大的电偶极矩,可以对微弱电场产生很强的响应,因此已经成为一个非常有前景的微波测量量子体系。此外,由于里德堡原子之间具有长程强相互作用,常被用于模拟研究强关联系统以及相

超导量子干涉仪简介

  SQUID实质是一种将磁通转化为电压的磁通传感器,其基本原理是基于超导约瑟夫森效应和磁通量子化现象.以SQUID为基础派生出各种传感器和测量仪器,可以用于测量磁场,电压,磁化率等物理量.被一薄势垒层分开的两块超导体构成一个约瑟夫森隧道结.当含有约瑟夫森隧道结的超导体闭合环路被适当大小的电流偏置后

超导体:传统BCS理论与高温超导理论

  超导是一种物理现象,指某些材料在低温下电阻突然消失,呈现出零电阻和完全抗磁性的特征。超导最早是在1911年由荷兰科学家昂内斯发现的,当时他将汞冷却到4.2K时,发现其电阻降为零。后来人们又陆续发现了许多其他的超导材料,如铅、锡、铌等。  超导有两个重要的特点:零电阻和完全抗磁性。零电阻意味着超导

平面镍氧化物电子结构与电子多体效应研究获进展

香港科技大学(广州)先进材料学域与量子科技中心教授李昊翔团队与美国科罗拉多大学、美国阿贡国家实验室,以及山东大学教授张俊杰团队合作,首次通过实验展示了平面镍氧化物的电子结构与多体相互作用的信息,发现了平面镍氧化物具有远超铜基高温超导体正常态中的电子相互作用强度。相关研究1月13日发表于《科学进展》。

平面镍氧化物电子结构与电子多体效应研究获进展

  香港科技大学(广州)先进材料学域与量子科技中心教授李昊翔团队与美国科罗拉多大学、美国阿贡国家实验室,以及山东大学教授张俊杰团队合作,首次通过实验展示了平面镍氧化物的电子结构与多体相互作用的信息,发现了平面镍氧化物具有远超铜基高温超导体正常态中的电子相互作用强度。相关研究1月13日发表于《科学进展

美国研发出一种手性拓扑超导体

  美国宾夕法尼亚州立大学的科研人员推出了一种手性拓扑超导体(Chiral Topological Superconductor),对于推进量子计算和探索理论手性马约拉纳粒子(Majorana particle)至关重要。相关研究发表在《科学》杂志上。  手性拓扑超导体来自超导体与磁性拓扑绝缘体的结

美国研发出一种手性拓扑超导体

  美国宾夕法尼亚州立大学的科研人员推出了一种手性拓扑超导体(Chiral Topological Superconductor),对于推进量子计算和探索理论手性马约拉纳粒子(Majorana particle)至关重要。相关研究发表在《科学》杂志上。  手性拓扑超导体来自超导体与磁性拓扑绝缘体的结

研究人员成功实现利用超导体掌握芯片上的自旋波

代尔夫特理工大学的研究人员利用超导体成功控制了芯片上的自旋波,这可能会改变节能技术和量子计算的游戏规则。代尔夫特理工大学(Delft University of Technology)的量子物理学家首次证明,利用超导体在芯片上控制和操纵自旋波是可能的。这些磁体中的微小自旋波可能在未来成为电子器件的替

重费米子超导体CeCu2Si2中的重准粒子

  CeCu2Si2是第一个重费米子超导体,也是公认的第一个非常规超导体,在超导研究的历史中扮演着重要的角色。它在1979年由德国科学家Frank Steglich教授(现为浙江大学关联物质中心主任)发现。一直以来,人们对CeCu2Si2的强关联物理性质、尤其是其重费米子超导电性保持着极大的兴趣。C

Nature子刊:自旋极化STM等对量子材料中自旋流的原位探测

  近日,北京大学量子材料科学中心韩伟研究员、谢心澄院士和日本理化学研究所Sadamichi Maekawa教授受邀在国际著名刊物 Nature Materials (《自然-材料》)撰写综述文章,介绍“自旋流-新颖量子材料的灵敏探针”这一新兴领域的前沿进展。  自旋电子学起源于巨磁阻效应的发现,在

业界热议“室温超导”相关技术,未来几年国内超导产业有望迎来迅猛增长

  近日,“室温超导”热度持续走高。8月2日,天风国际证券分析师郭明錤表示,常温常压超导体的商业化尚无时间表,但是未来它将对消费电子领域的产品设计产生颠覆性影响,即便iPhone都能拥有匹敌量子计算机的运算能力。  从二级市场来看,超导相关概念股表现活跃。东方财富Choice数据显示,8月2日,超导

复旦大学研究团队在二维超导天线的研究中获重要进展

  近年来,二维层状单晶超导材料在国际上成为备受关注的研究重点。相较于传统非晶态、多晶态超导薄膜,二维层状单晶超导材料由于其极高的单晶质量,因而能将超导态保持到纳米级的原胞层厚度,这使得探测样品的本征二维超导的新奇属性成为可能。尽管二维层状单晶超导材料拥有丰富的量子现象,其在新功能纳米器件方面亦拥有

科学家首次实现基于里德堡原子临界增强的敏微波传感

日前,中国科学技术大学郭光灿院士团队在基于相变的精密测量上取得新进展。团队史保森教授、丁冬生教授课题组与丹麦奥尔胡斯大学Klaus Mølmer教授和英国杜伦大学Charles S. Adams教授合作,利用强关联系统的相变提高了里德堡原子对微波电场测量的精度和灵敏度,灵敏度可达49纳伏每厘米每根号

10特斯拉,“魔角”三层石墨烯仍超导

   麻省理工学院的物理学家在一种被称为“魔角”三层石墨烯的材料中观察到一种罕见的超导现象。  从双层到三层、超导消失又回来、10特斯拉也能“哥俩好”……“魔角”石墨烯可能真的有“魔法”。  近日,美国麻省理工学院(MIT)物理学家在一种被称为“魔角”三层石墨烯的材料中观察到一种罕见超导现象。这种材

硼化镁超导体的概述

  2001年1月,日本青山学院大学J.Akimitsu教授等人首次发现MgB2具有超导电性,其临界温度约为39K。  虽然MgB2的临界温度较低,但与铜氧超导体、铁基超导体相比,仍有很多优势,包括:结构简单、易于制备;原料来源广泛、成本较低;易于加工。尤其是易于加工的特性,成为MgB2的重要优势。

室温超导体“突破”遭质疑

LK-99材料有一个边缘呈悬浮状态  一个研究小组声称已经创造出第一种在室温和环境压力下完美导电的材料,但许多物理学家对此持高度怀疑态度。美国威廉与玛丽学院的Hyun-Tak Kim表示,他将支持任何试图复制其团队工作的人。  超导体是一种可以使电流在没有任何阻力的情况下移动的材料,因此可以显著降低

简介超导体的弱电应用

  超导计算机:高速计算机要求集成电路芯片上的元件和连接线密集排列,但密集排列的电路在工作时会发生大量的热,而散热是超大规模集成电路面临的难题。超导计算机中的超大规模集成电路,其元件间的互连线用接近零电阻和超微发热的超导器件来制作,不存在散热问题,同时计算机的运算速度大大提高。此外,科学家正研究用半

室温超导体“突破”遭质疑

原文地址:http://news.sciencenet.cn/htmlnews/2023/7/505564.shtm LK-99材料有一个边缘呈悬浮状态。图片来源:Hyun-Tak Kim et al. (2023)一个研究小组声称已经创造出第一种在室温和环境压力下完美导电的材料,但许多物理

超导体的研究和特性

因为超导体拥有零电阻的物质,所以可以有完美的导电性。当它处在外加磁场中,会对磁场产生的微弱排斥力,这种现象称为迈斯纳效应或者完美的抗磁性。超导磁铁在核磁共振成像机中用作电磁铁。超导现象是在1911年发现,在往后的时间只知部分金属和合金在绝对温标30度之下拥有这种特性。直到1986年,在一些陶瓷的氧化

简述超导体的分类方法

  超导体的分类方法有以下几种:  (1)根据材料对于磁场的响应:第一类超导体和第二类超导体。从宏观物理性能上看,第一类超导体只存在单一的临界磁场强度;第二类超导体有两个临界磁场强度值,在两个临界值之间,材料允许部分磁场穿透材料。从理论上看,如上文“理论解释”中的GL理论所言,参数κ是划分两类超导体

超导体的抗磁性应用

  超导磁悬浮列车:利用超导材料的抗磁性,将超导材料放在一块永久磁体的上方,由于磁体的磁力线不能穿过超导体,磁体和超导体之间会产生排斥力,使超导体悬浮在磁体上方。利用这种磁悬浮效应可以制作高速超导磁悬浮列车。  核聚变反应堆“磁封闭体”:核聚变反应时,内部温度高达1亿~2亿摄氏度,没有任何常规材料可

简介超导体的BCS理论

  BCS理论是以近自由电子模型为基础,以弱电子-声子相互作用为前提建立的理论。理论的提出者是巴丁(J.Bardeen)、库珀(L.V.Cooper)、施里弗(J.R.Schrieffer)。  BCS理论认为,金属中自旋和动量相反的电子可以配对形成库珀对,库珀对在晶格当中可以无损耗的运动,形成超导

二维半金属—二维超导体之间超流拖拽效应揭示

  15日,记者从中国科学技术大学获悉,该校曾长淦教授、李林副研究员研究团队与北京量子信息科学研究院解宏毅副研究员等合作,通过构筑石墨烯与氧化物界面超导体系的复合结构,揭示了二维半金属和二维超导体之间由于量子涨落诱导的巨幅超流拖拽效应。相关成果日前在线发表于《自然物理》。  对于两个空间相近但彼此绝

新型CuAs基超导体提供解析新视角

  自2008年铁砷基超导体(LaFeAsO1-xFx)被发现后,(Ba1-xKx)Fe2As2,FeSe和KxFe2Se2等高温超导体的涌现极大地推动了超导物理及相关学科的发展。在铁基超导体中,超导物性决定单元是反萤石型的[Fe2X2]2 -(X=As, Se)层,当其中的Fe原子被Ni或Co替代

拓扑量子计算的各种平台及最新进展

  2021年9月22日,拓扑量子计算进展研讨会在北京举行。这次研讨会由中国科学院大学卡弗里理论科学研究所组织,由卡弗里所与中国科学院物理研究所共同举办。拓扑量子计算是利用拓扑材料中具有非阿贝尔统计的准粒子构筑量子比特、执行量子计算的研究方案。由于材料的拓扑稳定性,拓扑量子计算有望解决量子比特退相干