自然状态材料中存在量子临界点
据美国物理学家组织网1月20日报道,近日,一个美日国际研究小组以镱为基础材料研制出一种奇特的新型超导体。该超导体不需要改变压力、磁场强度或经化学掺杂,在自然状态就能达到物理学家所说的“量子临界点”。这一发现突破了理论物理的限制,为人们理解量子临界状态打开了新视野。这种异常性质,也将改变人们对超导体制造、电子数据存储的理解方式。研究论文发表在1月21日的《科学》杂志上。 “量子临界点”是界定一种材料是不是超导体、如何变成超导体的一个属性评估标准,经过了这个点,材料对电流的电阻会完全消失。尽管进行过各种严密的实验和检测,科学家目前仍然无法完全理解超导材料的“量子临界点”这个关键特征。 长期以来,科学家通过给材料施加强磁场和高压,或在材料中添加某些原子杂质,转变材料性质将其“调整”到量子临界点,由此实现超导。而新研究首次在不加调整的情况下,让新材料以自然状态到达了量子临界点。 这项研究开始于200......阅读全文
我国科学家首次发现并证实玻色子奇异金属
1月12日, Nature刊发了题为《玻色子体系中的奇异金属态》(Signatures of a strange metal in a bosonic system)的研究论文,称我国科学家首次在高温超导体中发现并证实了玻色子奇异金属。该工作是中国工程院院士、电子科技大学电子薄膜与集成器件国家重点实
科学家首次发现并证实玻色子奇异金属
电子科技大学电子薄膜与集成器件国家重点实验室主任李言荣院士团队与美国布朗大学教授James M. Valles Jr、北京大学物理学院/量子材料科学中心谢心澄院士等协同攻关,成功突破了费米子体系的限制,首次在玻色子体系中诱导出奇异金属态。相关研究1月12日发表于《自然》。 宇宙中,基本粒子分为费
中外学者合作首次实现一种高灵敏微波传感
18日从中国科学技术大学获悉,该校科研团队与合作者在精密测量上取得新进展——首次实现基于里德堡原子临界增强的高灵敏微波传感。 该研究成果17日发表在国际知名学术期刊《自然—物理》(Nature Physics)上。 据悉,中国科学技术大学郭光灿院士团队中史保森教授、丁冬生教授课题组与丹麦奥尔
金属所三维伊辛模型精确解研究取得进展
2007年,中国科学院金属研究所研究员张志东在英国《哲学杂志》(Philosophical Magazine)上发表论文,提出两个猜想,并在猜想基础上推定出三维伊辛模型的精确解。被《哲学杂志》审稿人评价为“过去几十年间,三维伊辛模型领域的最重要进展……可作为三维伊辛情况精确描述的一个基准”。论文
超临界流体色谱法物质临界点的介绍
我们知道,某些纯物质具有三相点和临界点.纯物质的相图见图20-s1由三相图看出:物质在三相点下,气,液,固三态处于平衡状态.而在物质的超临界温度下,其气相和液相具有相同的密度.当处于临界温度以上,则不管施加多大压力,气体也不会液化.在临界温度和临界压力以上,物质是以超临界流体状态存在.即在超临界
临界点干燥仪的注意事项与日常维护
临界点干燥仪在使用过程中需要用到高压气体,需要特别小心。操作过程中有许多需要注意的事项,操作人员需要正确操作,并做好日常维护检查,避免仪器时发生意外。 注意事项 1.仪器需要在稳固的地方安装。 2.确保正确的排气和通风。 3.使用时应紧固气体钢瓶,并且避免高压软管和排出管凹陷或弯折
警惕!气候危及引起多个“灾难性”气候临界点
德国波茨坦气候影响研究所近期进行的一项重要研究显示,迄今为止人类活动导致全球气温上升1.1摄氏度,由此引发的气候危机已经令世界濒临5个“灾难性”临界点,其中包括格陵兰岛冰盖融化等。 研究人员指出,触发临界点将给世界带来巨大影响,为维持地球上的宜居条件并使社会保持稳定,人们必须竭尽所能防止越过临界
4位院士致力于科普,这个地方有福了
5月21日,为大力弘扬科学精神,普及科学知识,根据科技部、中宣部、中国科协、中科院总体部署,中国科学技术大学举办2022年科技活动周暨第十八届公众科学日活动。其中,作为活动周“重头戏”——系列科普报告会第一阶段报告“开讲”,中国科学技术大学包信和、陈仙辉、田志刚、郭光灿4位院士,科大讯飞董事长、中国
“魔角”石墨烯超导性成因揭示
据最新发表在《自然》杂志上的一项研究,美国俄亥俄州立大学领衔团队发现的新证据显示,当石墨烯偏转到某个精确角度时,可成为超导体,传输电能而不损失能量。量子几何在这种偏转石墨烯成为超导体方面发挥了关键作用。 2018年,麻省理工学院科学家发现,如果在合适条件下,将一片石墨烯放在另一片石墨烯上,并将两
陈仙辉院士:神奇的超导体,奇在哪里
陈仙辉,中国科学院院士,深耕超导领域30余年。长期以来他一直坚持新型非常规超导体的探索及超导和强关联物理的研究,在非常规超导体和功能材料的探索及其物理研究方面,取得了一系列有国际影响力的重要成果,发现了铁基超导体、有机超导体等一系列新型超导体,取得了系统性和创新性成果,是国际上该领域有重要影响的科学
新型高质量拓扑超导材料问世-超导性能高达91.5%并稳定
记者25日从中科院合肥物质科学研究院了解到,该院强磁场科学中心科研人员近期研发出一种新型高质量单晶体。这种材料的超导性能高达91.5%,且在空气中十分稳定,在10特斯拉到35特斯拉磁场区间出现了周期性的量子振荡信号,证明其存在拓扑保护表面态。 拓扑超导态是物质的一种新状态,拓扑超导体的表面存在
物理所铁基超导体新122体系新超导体探索取得进展
FeAs基超导体的超导电性被普遍认为源自自旋涨落诱导的近似嵌套空穴型费米面和电子型费米面之间的带间散射。2010年11月,铁基超导体KFe2Se2【Phys. Rev. B 82, 182520 (R) (2010)】的发现引发了国际上铁基超导新的研究热潮。 中科院物理研究所/北京凝聚
物理所铜氧化合高温超导体中绝缘超导体转变研究获进展
铜氧化物高温超导体的母体是反铁磁莫特绝缘体, 高温超导电性的产生通过掺杂适当数量的载流子得以实现。介于母体和超导体之间,存在一个特殊而重要的过渡区,即所谓的重欠掺杂区域。在这个特定的区域, 少量的载流子掺杂使得三维反铁磁长程序被迅速压制,并且发生绝缘体-金属/超导体转变。这个区域的电子结
王健教授及合作者的最新成果:量子金属态的证实
量子材料与量子相变是本世纪凝聚态物理与材料领域的研究热点。量子相变与传统的热力学相变不同,是在绝对零度下调节非热力学参量而发生的相变,相变点附近量子涨落而非热涨落起了重要作用。作为量子相变的经典范例,二维超导-绝缘体相变以及超导-金属相变研究获得了2015年美国凝聚态物理最高奖巴克利奖。在量子相
物理所等在铁磷基超导家族中发现马约拉纳零能模平台
近几年来,在拓扑非平庸的铁基超导材料中研究马约拉纳零能模是凝聚态物理学家关注的前沿问题之一。近期,中国科学院院士、中科院物理研究所/北京凝聚态物理国家研究中心研究员高鸿钧团队和物理所研究员丁洪团队、北京师范大学教授殷志平团队、美国麻省理工学院教授傅亮团队合作,在自掺杂的双层铁基超导体CaKFe4
中子散射技术确定铁硒超导体磁基态
复旦大学物理系赵俊课题组利用中子散射技术在铁硒(FeSe)超导体中首次观测到了一种新奇的自旋为1的向列性量子无序顺磁态,这一磁基态的发现对理解FeSe类高温超导机理提供了新的角度,相关研究成果7月19日发表于《自然—通讯》。 超导电性是指在某一温度之下材料的电阻完全消失的现象。高温超导电性往往
摘掉“量子医学”的量子“高帽”
量子力学是描写微观世界的一个物理学分支,与相对论一起被认为是现代物理学的两大基本支柱,许多物理学理论和科学,如原子物理学、固体物理学、核物理学和粒子物理学,都是以量子力学为基础。 量子力学同时也给人们提供了新的关于自然界的表述方法和思考方法。在许多现代技术装备中,量子力学的效应起到
最具希望高温超导二极管或出现
原文地址:http://news.sciencenet.cn/htmlnews/2023/12/514537.shtm 堆叠、扭曲铜酸盐超导体的示意图。图片来源:物理学家组织网几十年来,超导体一直是物理学界研究的热点。但这些允许电子完美无损流动的材料,通常只在非常低的温度下(比绝对零度高几度
量子纠缠是量子电池必不可少的量子资源
原文地址:http://news.sciencenet.cn/htmlnews/2022/10/488378.shtm 中心自旋量子电池图(受访者供图) 2022年诺贝尔物理学奖让“量子纠缠”再次引发全世界关注。近日,中科院精密测量院科研团队与西北大学研究人员合作,首次证明了量子相干或
量子纠缠是量子电池必不可少的量子资源
2022年诺贝尔物理学奖让“量子纠缠”再次引发全世界关注。近日,中科院精密测量院科研团队与西北大学研究人员合作,首次证明了量子相干或量子纠缠在量子电池产生可提取功的过程中是必不可少的量子资源。相关研究成果近日发表在《物理评论快报》上。 关于量子电池的研究是近些年来颇受关注的量子科技问题,其中的
量子纠缠是量子电池必不可少的量子资源
2022年诺贝尔物理学奖让“量子纠缠”再次引发全世界关注。近日,中科院精密测量院科研团队与西北大学研究人员合作,首次证明了量子相干或量子纠缠在量子电池产生可提取功的过程中是必不可少的量子资源。相关研究成果近日发表在《物理评论快报》上。 关于量子电池的研究是近些年来颇受关注的量子科技问题,其中的
物理所等提出一类基于铁基非常规配对的拓扑超导体
近年来,铁基高温超导体作为自赋性拓扑超导体,引起了科研人员的兴趣。理论研究表明,铁基高温超导体是一个理想的实现Majorana零能模的体系;科研人员在多个铁基材料表面观测到Majorana零能模,揭开了在铁基超导体系中探寻Majorana零能模的序幕,这使铁基超导体可能成为拓扑计算的载体。 但
石墨烯扭转“角度”可变超导体
英国《自然》杂志日前连发两篇物理学重磅论文,报告了麻省理工学院(MIT)科学家对非常规超导材料的行为的新见解,这一发现轰动业界,被称为石墨烯超导的重大进展。此类材料已让物理学家困惑达几十年之久,而最新发现或有助于开发高温超导材料,用来制作强大的磁体或开发低功耗电子技术。 根据1957年的超导电
高温超导体基本特性的测量
实验目的 1.(利用直流测量法)测量超导体的临界温度; 2.观察磁悬浮现象; 3.了解超导体的两个基本特性—零电阻和迈斯纳效应。实验仪器 测量临界温度和阻值的成套仪器、迈斯纳效应成套仪器、计算机、CASSY 传感器 实验原理 1. 零电阻现象 处于绝对零度的理想的纯金属,其规则排列的原子(晶格)周期
超导体中为什么存在电流
所谓超导体就是其本身的电阻为零,所以流过电流时不会产生压降。另外其没有电势差但能流过电流可以这样解释:因为电源本身就有电势差,而超导体只是一条路径让自由电子无阻碍地通过而已。
超导体的电阻真为零吗
在一定温度下超导时,导体的电阻为0,但是由于有电流通过的话,一定会产生电热,所以,不可能使导体持续处在一定的温度下,也就是说,不可能一直使导体处于超导的状态下。但是如果可以的话,超导体的电阻为0。换句话说,理论上是有电阻为0的超导体的,但是实际上做不到。
超导体的完全导电性
完全导电性又称零电阻效应,指温度降低至某一温度以下,电阻突然消失的现象。 完全导电性适用于直流电,超导体在处于交变电流或交变磁场的情况下,会出现交流损耗,且频率越高,损耗越大。交流损耗是超导体实际应用中需要解决的一个重要问题,在宏观上,交流损耗由超导材料内部产生的感应电场与感生电流密度不同引起
超导体的完全抗磁性简介
完全抗磁性又称迈斯纳效应,“抗磁性”指在磁场强度低于临界值的情况下,磁力线无法穿过超导体,超导体内部磁场为零的现象,“完全”指降低温度达到超导态、施加磁场两项操作的顺序可以颠倒。完全抗磁性的原因是,超导体表面能够产生一个无损耗的抗磁超导电流,这一电流产生的磁场,抵消了超导体内部的磁场。 超导体
什么是“半导体”和“超导体”
半导体( semiconductor)指常温下导电性能介于导体(conductor)与绝缘体(insulator)之间的材料。超导体(英文名:superconductor),又称为超导材料,指在某一温度下,电阻为零的导体。在实验中,若导体电阻的测量值低于一个极小值,可以认为电阻为零。半导体是指一种导
张定薛其坤研究团队在高温超导机理研究中取得重大突破
导读: 该工作不但是铜氧化物高温超导研究的一个重大进展,同时也为破解高温超导机理这一科学难题指明了正确方向。 自1986年Bednortz和Müller发现铜氧化物高温超导以来,三十五年已经过去了,但作为凝聚态物理学最重要科学难题之一的高温超导机理至今仍然没有得到解决,甚至在最基本的科学问题,