美用迄今最薄半导体造出新型纳米激光器
美国科学家们利用迄今最纤薄(仅为三个原子厚)的半导体,制造出一种新型纳米激光器,其不仅能效更高,容易制造且可与目前的电子设备兼容。研究人员表示,这一研究成果为最终制造出用光而非电子传输信息的下一代计算设备奠定了坚实的基础。 从医疗到金属切割再到电子产品,激光器都在其中扮演重要角色,但为了满足现代计算、通讯、成像和传感要求,科学家们一直希望能制造出体型更小且耗能更低的激光系统。华盛顿大学和斯坦福大学携手研制的这款纳米激光器,用仅仅三个原子厚的钨基半导体作为发光“增益材料”,或将满足上述要求。 该研究主要负责人吴三丰(音译)表示:“纳米激光器中使用的钨基半导体也是最近才问世,单层钨基分子非常纤薄且能有效地发射光,科学家们已经用它制造出了晶体管、二极管、太阳能电池等,现在,开始用它制造纳米激光器。” 尽管纳米激光器体型娇小,肉眼无法看到,但其可广泛应用于多个领域—从下一代计算设备到能监测健康状况的可植入微型芯片等。不过......阅读全文
《自然》:世界最小纳米激光器在美问世
研究人员最近展示了一种有史以来最小的激光器,其包含一个直径仅为44纳米的纳米粒子。该器件因能产生一种称为表面等离子的辐射而被命名为“spaser”。这项新技术可允许光子局限在非常小的空间内,一些物理学家据此认为,就像晶体管之于现今的电子产品,spaser也许将成为未来光学计算机的基础。 美
科学家研发可变色纳米激光器
据悉,受大自然启发,科学家研发出了一种新型纳米激光器,能够使用与变色龙相同的纳米力学来改变颜色。变色龙通过控制其皮肤上纳米晶体的间距来改变颜色。这种新型纳米激光器则以类似的方式,通过控制可拉伸聚合物基体上的金属纳米颗粒的周期分布来实现颜色的改变。可拉伸聚合物基体通过拉伸可以将纳米颗粒之间的距离变大,
硅表面生长纳米激光器技术问世
据美国物理学家组织网近日报道,美国加利福尼亚大学伯克利分校科学家利用新技术直接在硅表面生长出了极微小的纳米柱,形成一种亚波长激光器,这一成果将为制造纳米光学设备如激光器、光源检测仪、调制器、太阳能电池等带来新的突破。 硅材料奠定了现代电子学的基础,但它在发光领域还有很多不足
试析纳米激光粒度仪当常见的两种激光器
激光粒度仪是一种光学的测量仪器,激光器、探测器是其中重要的构成,是重要的光学元件。而纳米激光粒度仪是通过颗粒的衍射或散射光的空间分布(散射谱)来分析颗粒大小的仪器,根据能谱稳定与否分为静态光散射粒度仪和动态光散射激光粒度仪。纳米激光粒度仪采用动态光散射原理和光子相关光谱技术,根据颗粒在液体中的布朗运
首台室温操作电注入式纳米激光器问世
以电为能源、可在室温下操作的纳米激光器经过长期的基础研究之后,首次验证成功。 由空军科学研究办公室和DARPA资助,宁春正(音译)博士及其团队在亚利桑那州立大学完成了保持该项工作未偏离摩尔定律的一些关键解决方案。 摩尔定律预言,在很长一段时期内,集成电路上可容纳的晶体管数目,约每2年
激光器有哪些特点-激光器特点介绍
激光器的特点有哪些? 光纤激光器近几年倍受关注,成为大家研究的重点,这是因为它早有其它激光器所无法比拟的优点,主要表现在: (1) 光束质量好,具有非常好的单色性、方向性和稳定性; (2) 光纤既是激光增益介质又是光的导波介质,因此泵浦光的祸合效率相当的高,纤芯直径小,纤内易形成高功率密度
日本开发波长为0.15纳米的原子级激光器
据《日刊工业新闻》8月27日报道,日本电气通信大学、理化学研究所、东京大学等多个大学和研究机构组成的研究团队,最近成功开发波长为0.15纳米的原子级激光器。据称,该激光器的波长是目前世界最短,比现有最短波长激光器的波长小一个数量级。该研究成果已发表在英国《自然》杂志电子版。 研究团队在20微
固体激光器与气体激光器的区别
许多不同种类的激光器和激光系统。问题在于如何针对具体应用,选择最合适的激光技术,以提供最好的解决方案。事实上,没有哪种激光技术可以覆盖所有的需求,即便未来的发展也不能改变这个事实:选择使用哪种激光器是由具体应用来决定的。这归结于对于给定的任务,利用什么样的激光器能得到最好的结果。如今中国的激光器
美用迄今最薄半导体造出新型纳米激光器
美国科学家们利用迄今最纤薄(仅为三个原子厚)的半导体,制造出一种新型纳米激光器,其不仅能效更高,容易制造且可与目前的电子设备兼容。研究人员表示,这一研究成果为最终制造出用光而非电子传输信息的下一代计算设备奠定了坚实的基础。 从医疗到金属切割再到电子产品,激光器都在其中扮演重要角色,但为了满足
激光粒度仪中半导体激光器与氦氖激光器
半导体激光器氦氖激光器外观激光功率稳定性对比 半导体激光器模块的核心部件为半导体激光管,即LD(Laser Diode),绝大多数半导体激光器模块生产厂家均是购买来LD然后进行装配的。半导体激光管(LD)的激光输出功率会随其壳体的温度变化而有较大变化。下图为一个典型的半导体激光管的功率-电流曲线,从
可调谐激光器与连续激光器什么区别
可调谐激光器tunable laser 是指在一定范围内可以连续改变激光输出波长的激光器.连续激光器相对于脉冲激光器来说的,连续的就是输出激光是连续的一直开着的状态,脉冲就类似照相机闪光灯的开关状态,一闪一闪的
激光器结构原理是什么-激光器结构原理介绍
1、激光介质可以是气体、液体、固体和半导体,要求存在亚稳态能级为实现粒子数反转之必要条件;现有工作介质近千种,可以产生的激光波长从真空紫外到远红外,非常广泛; 2、激励源使介质出现粒子数反转。可以是电激励、光激励、热激励、化学激励等等。电激励用气体放电的方法去激励介质原子;各种激励方式又被形象
激光器的分类
可调谐激光器 可调谐激光器tunable laser 是指在一定范围内可以连续改变激光输出波长的激光器(见激光)。这种激光器的用途广泛,可用于光谱学、光化学、医学、生物学、集成光学、污染监测、半导体材料加工、信息处理和通信等。 单模激光器 输出为单横模(一般为基模)、多纵模的激光器。 化
fLaser-光纤激光器
fLaser 光纤激光器 针对光纤光谱仪开发 / 小功率 & 高稳定 / 荧光 & 拉曼专用 fLaser 光纤激光器 针对光纤光谱系统开发,默认 50 / 100μm 芯径光纤输出,已满足多数实验需要。同时,fLaser 提供 3 种常见 Rama
气体激光器分类
气体激光器分为原子气体激光器、离子气体激光器、分子气体激光器和准分子激光器。它们工作在很宽的波长范围,从真空紫外到远红外,既可以连续方式工作,也可以脉冲方式工作。原子气体激光器包括各种惰性气体激光器和各种金属蒸气激光器,如氦氖激光器和铜蒸气激光器。其中氦氖激光器是最早研究成功的,并且仍在普遍使用。它
导激光器简介
固体、液体、气体、半导体等工作物质都可以做成波导激光器,其中较为成熟的是CO₂波导激光器。CO₂激光器的波导管是内径很细(约1nm)、内表面很光滑的空心导管,可以是圆形或方形,通常用氧化铍(BeO)陶瓷做成。波导管只允许低阶模通过,对高阶模的损耗很大,故输出激光的光束质量很好。CO₂波导激光器的工作
气体激光器分类
气体激光器分为原子气体激光器、离子气体激光器、分子气体激光器和准分子激光器。它们工作在很宽的波长范围,从真空紫外到远红外,既可以连续方式工作,也可以脉冲方式工作。 原子气体激光器 包括各种惰性气体激光器和各种金属蒸气激光器,如氦氖激光器和铜蒸气激光器。其中氦氖激光器是最早研究成功的,并且仍在
激光器的分类
根据工作物质物态的不同可把所有的激光器分为以下几大类:①固体激光器(晶体和玻璃),这类激光器所采用的工作物质,是通过把能够产生受激辐射作用的金属离子掺入晶体或玻璃基质中构成发光中心而制成的;②气体激光器,它们所采用的工作物质是气体,并且根据气体中真正产生受激发射作用之工作粒子性质的不同,而进一步区分
激光器的结构
激光器一般包括三个部分。1、激光工作介质激光的产生必须选择合适的工作介质,可以是气体、液体、固体或半导体。在这种介质中可以实现粒子数反转,以制造获得激光的必要条件。显然亚稳态能级的存在,对实现粒子数反转世非常有利的。产生的激光波长包括从真空紫外道远红外,非常广泛。2、激励源为了使工作介质中出现粒子数
激光器的分类
根据工作物质物态的不同可把所有的激光器分为以下几大类:①固体激光器(晶体和玻璃),这类激光器所采用的工作物质,是通过把能够产生受激辐射作用的金属离子掺入晶体或玻璃基质中构成发光中心而制成的;②气体激光器,它们所采用的工作物质是气体,并且根据气体中真正产生受激发射作用之工作粒子性质的不同,而进一步区分
激光光源之激光与染料激光器
1、激光普通光源(如白炽灯、荧光灯和氙弧灯等)发出的光向四面八方发射,相干性很差。如果能量 hv =E2-E1 的外来光子照射到处于 E2 激发态的原子上,它就会诱导该原子从高能级 E2 跃迁到 低能级如基态 E1 ,同时辐射出一个光子,这种辐射称为受激辐射。受激辐射跃迁所产生的光子与该外来光子有着
激光光源之激光与染料激光器
1、激光普通光源(如白炽灯、荧光灯和氙弧灯等)发出的光向四面八方发射,相干性很差。如果能量 hv =E2-E1 的外来光子照射到处于 E2 激发态的原子上,它就会诱导该原子从高能级 E2 跃迁到 低能级如基态 E1 ,同时辐射出一个光子,这种辐射称为受激辐射。受激辐射跃迁所产生的光子与该外来光子有着
半导体激光器与氦氖激光器的比较
导体激光器与氦氖激光器的比较总体来讲,红光半导体激光器与氦氖激光器相比各有其优势和劣势。本文对氦氖激光器与半导体激光的优缺点进行一些简述,希望对不同应用的客户在选择激光器时产生些许帮助。激光功率稳定性对比半导体激光器模块的核心部件为半导体激光管,即LD(Laser Diode),绝大多数半导体激光器
激光粒度仪关于氦氖激光器与半导体激光器的对比
波长越短测量精度越高。氦氖激光波长632.8纳米,显然优于半导体激光635纳米和650纳米。氦氖激光线宽窄稳定性高在诸多激光器中是的,这已经是光学界的共识。半导体激光器的线宽在各种激光器中是zui宽的,可以达到几十至几百cm-1,也就是说半导体激光器的单色性是zui差的。从激光原理看,激光发光与跃迁
激光粒度仪关于氦氖激光器与半导体激光器的对比
波长越短测量精度越高。氦氖激光波长632.8纳米,显然优于半导体激光635纳米和650纳米。氦氖激光线宽窄稳定性高在诸多激光器中是的,这已经是光学界的共识。半导体激光器的线宽在各种激光器中是zui宽的,可以达到几十至几百cm-1,也就是说半导体激光器的单色性是zui差的。从激光原理看,激光发光与跃
关于氦氖激光器与半导体激光器的对比
波长越短测量精度越高。氦氖激光波长632.8纳米,显然优于半导体激光635纳米和650纳米。 氦氖激光线宽窄稳定性高在诸多激光器中是首屈一指的,这已经是光学界的共识。 半导体激光器的线宽在各种激光器中是最宽的,可以达到几十至几百cm-1,也就是说半导体激光器的单色性是最差的。
3a级激光器与3b级激光器区别
3a一般指功率小于五毫瓦大于一毫瓦,3b指的是大于五毫瓦小于五百毫瓦,这是通常的说法不过还需要看光斑大小
激光器应用——激光扫描共聚焦显微
iFLEX激光器应用——激光扫描共聚焦显微1,什么是激光扫描共聚焦显微共聚焦显微技术是近十几年迅速发展起来的一项高新研究技术,目前应用领域扩展到细胞学、微生物学、发育生物学、遗传学、神经生物学、生理和病理学等学科的研究工作中,成为现代生物学微观研究的重要工具。激光扫描共聚焦显微镜的主要是利用激光扫描
激光器激光工作物质相关介绍
是指用来实现粒子数反转并产生光的受激辐射放大作用的物质体系,有时也称为激光增益媒质,它们可以是固体(晶体、玻璃)、气体(原子气体、离子气体、分子气体)、半导体和液体等媒质。对激光工作物质的主要要求,是尽可能在其工作粒子的特定能级间实现较大程度的粒子数反转,并使这种反转在整个激光发射作用过程中尽可
激光粒度仪中激光器的特点
与He-Ne激光器相比半导体激光器的优点和缺点 半导体激光器又称激光二极管(LD),是二十世纪八十年代半导体物理发展的成果之一。导体激光器的优点是体积小、重量轻、可靠性高、使用寿命长、功耗低,此外半导体激光器是采用低电压恒流供电方式,电源故障率低、使用安全,维修成本低等。因此应用领域日益扩大