硅表面生长纳米激光器技术问世

据美国物理学家组织网近日报道,美国加利福尼亚大学伯克利分校科学家利用新技术直接在硅表面生长出了极微小的纳米柱,形成一种亚波长激光器,这一成果将为制造纳米光学设备如激光器、光源检测仪、调制器、太阳能电池等带来新的突破。 硅材料奠定了现代电子学的基础,但它在发光领域还有很多不足之处。工程人员转向了另外一族名为III-V半导体的新材料,以此来制造光基元件,如发光二极管和激光器。 加利福尼亚大学伯克利分校的研究人员通过金属—有机化学蒸发沉积的方法,在400摄氏度条件下,用一种III-V族材料铟镓砷在硅表面生长出纳米柱。这种纳米柱有着独特的六角形晶体结构,能将光线控制在它微小的管中,形成一种高效导控光腔。它能在室温下产生波长约950纳米的近红外激光,光线在其中以螺旋形式上下传播,经过光学上的相互作用而得以放大。 研究人员指出,将III-V和硅结合制成单一的光电子芯片面临的最大障碍是,目前制造硅基材料的......阅读全文

硅表面生长纳米激光器技术问世

  据美国物理学家组织网近日报道,美国加利福尼亚大学伯克利分校科学家利用新技术直接在硅表面生长出了极微小的纳米柱,形成一种亚波长激光器,这一成果将为制造纳米光学设备如激光器、光源检测仪、调制器、太阳能电池等带来新的突破。   硅材料奠定了现代电子学的基础,但它在发光领域还有很多不足

加州大学伯克利分校教授孙崧加盟浙大“梦之队”

  据“浙江大学”微信公众号1月2日消息,加利福尼亚大学伯克利分校数学系正教授孙崧加盟浙江大学数学高等研究院任杜建英讲席教授,成为该院第五位永久成员。         孙崧  2002年进入中科大少年班,2006年赴美国留学进入威斯康辛大学麦迪逊分校,2010年获得博士学位,回国前为加利福尼亚大学伯

加大伯克利分校李嘉诚生物医学健康科学中心落成

  加州大学伯克利分校李嘉诚生物医学和健康科学中心十月二十一日揭幕,为致力解开致命疾病谜团的生物医学研究,展开新的一页。   新落成的二十万平方英尺大楼,将成为校园内的跨学科研究基地,联系不同领域的医学研究,除研究病征外,更探讨如何防范如癌症、老年痴呆症、爱滋病、肺结核等疾病的致病根源。   来

直播预告|加州大学伯克利分校教授讲述智能超材料

直播时间:2024年4月12日(周五)20:00-21:30直播平台:科学网APPhttps://weibo.com/l/wblive/p/show/1022:2321325022353473274033(科学网微博直播间链接)科学网微博科学网视频号北京时间2024年4月12日晚八点,iCANX T

美国加州大学洛杉矶分校研发出新型太赫兹半导体激光器

  据加州大学洛杉矶分校官网报道,该校科研人员利用新方法制造出太赫兹频率下工作的半导体激光器。这一突破或将带来可用于太空探索、军事和执法等领域的新型强大激光器。   在电磁波谱中,太赫兹的频率范围位于微波和红外线之间。太赫兹波可以在不损伤被检测物质的前提下对塑料、服装、半导体和艺术品等进行材料分析,

美国加州大学洛杉矶分校研发出新型太赫兹半导体激光器

  据加州大学洛杉矶分校官网报道,该校科研人员利用新方法制造出太赫兹频率下工作的半导体激光器。这一突破或将带来可用于太空探索、军事和执法等领域的新型强大激光器。   在电磁波谱中,太赫兹的频率范围位于微波和红外线之间。太赫兹波可以在不损伤被检测物质的前提下对塑料、服装、半导体和艺术品等进行材料分析,

加州大学伯克利分校等在欧洲获得CRISPR/Cas9ZL权

  2012年,一种名为“CRISPR/Cas9”的DNA编辑技术横空出世。从那时开始,CRISPR/Cas9被用于很多生物系统中进行基因组编辑,在各大顶级期刊上发表了大量文章,可算是赚足了眼球。随着CRISPR/Cas9基因编辑系统逐渐进化,并趋于成熟,从学术界的共享走向ZL申请以及商业化的道路也

共建研究院!兰州大学与加州伯克利分校等签署合作协议

  9月4日,兰州大学副校长潘保田赴四川省眉山市访问,代表学校出席与加州大学伯克利分校、华西希望集团和眉山市四方共建研究院合作协议签署仪式。加州伯克利化学院院长道格拉斯·克拉克,化学院终身教授、美国科学院院士杨培东,全球科学研究院杰出特聘学者陈家俊,华西希望集团总裁王德根,副总裁张兵,希望教育集团执

加州大学洛杉矶分校研发首个太赫兹VCSEL激光器

在美国国家科学基金会(NSF)的资助下,加州大学洛杉矶分校(UCLA)亨利塞缪尔工程和应用科学学院研究人员已经发现了一种制备太赫兹频率半导体激光器的新方法。该课题组的论文《超材料腔表面激光器》已于近日发表在2015年最后一期《应用物理快报》期刊上(Luyao Xu et al, ’Metasurfa

半导体激光器的应用

半导体激光器是成熟较早、进展较快的一类激光器,由于它的波长范围宽,制作简单、成本低、易于大量生产,并且由于体积小、重量轻、寿命长,因此,品种发展快,应用范围广,目前已超过300种,半导体激光器的最主要应用领域是Gb局域网,850nm波长的半导体激光器适用于)1Gh/。局域网,1300nm -1550

什么是半导体激光器?

半导体激光器是以一定的半导体材料做工作物质而产生受激发射作用的器件。

半导体激光器的特性

  半导体激光器能够给科研或者集成用户提供性能出色的激光器产品,用于制造zui为的激光器系统。半导体激光器具有高效的光电转换效率,且通过光束整形可直接应用于激光加工等领域,而光纤激光器由于其的光束质量早已已成为国内外研究的热门。但半导体激光器将来有没有可能直接获得高光束质量的激光,从而“打败”光纤激

半导体激光器的发展

半导体物理学的迅速发展及随之而来的晶体管的发明,使科学家们早在50年代就设想发明半导体激光器,60年代早期,很多小组竞相进行这方面的研究。在理论分析方面,以莫斯科列别捷夫物理研究所的尼古拉·巴索夫的工作最为杰出。在1962年7月召开的固体器件研究国际会议上,美国麻省理工学院林肯实验室的两名学者克耶斯

半导体激光器的特性

  半导体激光器具有高速调制、功率稳定、线宽窄、体积小、结构紧凑、驱动电路集成化的特点。半导体激光器具有的光束质量和调制性能,广泛应用于:科学研究,工业仪器开发、OEM系统集成。此外,尾纤半导体激光器、外部光纤耦合模块、小型半导体泵浦固体激光器可供选择。  半导体激光器能够给科研或者集成用户提供性能

三名华裔教授当选美国国家工程学院院士

  美国国家工程学院2月17日公布68位新院士名单,三位华裔教授上榜。   麻省理工学院微纳米工程实验室主任陈刚教授,加州大学伯克利分校纳米科学和工程中心主任张翔教授,斯坦福大学管理资讯科学学院及商学院李效良教授因分别在纳米传热和热电转换领域、纳米超材料和激光物理学领域、供应链设计和管理领域的卓越

半导体激光器与氦氖激光器的比较

导体激光器与氦氖激光器的比较总体来讲,红光半导体激光器与氦氖激光器相比各有其优势和劣势。本文对氦氖激光器与半导体激光的优缺点进行一些简述,希望对不同应用的客户在选择激光器时产生些许帮助。激光功率稳定性对比半导体激光器模块的核心部件为半导体激光管,即LD(Laser Diode),绝大多数半导体激光器

清华大学国际纳米光电子学研究中心成立

  5月20日上午,清华大学国际纳米光电子学研究中心(以下简称“中心”)成立仪式暨纳米光电子学学术报告会在清华大学举行。清华大学副校长王希勤教授,中心学术委员会名誉主任、清华大学电子系教授周炳琨院士,中心学术委员会主任、南京大学祝世宁院士,中心学术委员会委员、浙江大学朱诗尧院士,中心学术委员会委员、

清华大学国际纳米光电子学研究中心成立

  5月20日上午,清华大学国际纳米光电子学研究中心(以下简称“中心”)成立仪式暨纳米光电子学学术报告会在清华大学举行。清华大学副校长王希勤教授,中心学术委员会名誉主任、清华大学电子系教授周炳琨院士,中心学术委员会主任、南京大学祝世宁院士,中心学术委员会委员、浙江大学朱诗尧院士,中心学术委员会委员、

著名半导体光电子学家王圩逝世

  1月26日,中科院半导体所发布王圩院士讣告。  以下为讣告全文:讣告  中国共产党优秀党员、中国科学院院士,中国科学院半导体研究所研究员、我国著名半导体光电子学家王圩先生因病医治无效,不幸于2023年1月26日18点11分在北京逝世,享年86岁。  王圩院士1937年12月25日生于河北文安,1

半导体激光器测试方法标准

  本标准规定了半导体激光器主要光电参数的测试方法。本标准适用于半导体激光器主要光电参数的测试。半导体激光器组件可参考执行。下载链接:https://www.antpedia.com/standard/7060196.html

半导体激光器的工作原理

工作原理是,通过一定的激励方式,在半导体物质的能带(导带与价带)之间,或者半导体物质的能带与杂质(受主或施主)能级之间,实现非平衡载流子的粒子数反转,当处于粒子数反转状态的大量电子与空穴复合时,便产生受激发射作用。半导体激光器的激励方式主要有三种,即电注入式,光泵式和高能电子束激励式。电注入式半导体

半导体激光器的技术特点

(1) 体积小,重量轻;(2) 驱动功率和电流较低;(3) 效率高、工作寿命长;(4) 可直接电调制;(5) 易于与各种光电子器件实现光电子集成;(6) 与半导体制造技术兼容;可大批量生产。由于这些特点,半导体激光器自问世以来得到了世界各国的广泛关注与研究。

半导体激光器的发展概况

半导体激光器又称激光二极管(LD)。进入八十年代,人们吸收了半导体物理发展的最新成果,采用了量子阱(QW)和应变量子阱(SL-QW)等新颖性结构,引进了折射率调制Bragg发射器以及增强调制Bragg发射器最新技术,同时还发展了MBE、MOCVD及CBE等晶体生长技术新工艺,使得新的外延生长工艺能够

半导体激光器的常用参数

半导体激光器的常用参数可分为:波长、阈值电流Ith 、工作电流Iop 、垂直发散角θ⊥、水平发散角θ∥、监控电流Im。(1)波长:即激光管工作波长,可作光电开关用的激光管波长有635nm、650nm、670nm、激光二极管690nm、780nm、810nm、860nm、980nm等。(2)阈值电流I

半导体激光器的特性测量

概述半导体激光器特性的测量可以被分成5大类,如表1所示:表1半导体激光器特性测量的五大类电性能测量光输出,压降以及PD的监测电流,还有对这些测量数据的衍生分析。空间性近场和远场的光强分布。光谱特性通过光谱数据计算光谱宽度和中心波长。光学性能测量光的发散以及波前畸变。动态性能测量噪声,互调失真,上升时

半导体激光器的产品分类

(1)异质结构激光器(2)条形结构激光器(3)GaAIAs/GaAs激光器(4)InGaAsP/InP激光器(5)可见光激光器(6)远红外激光器(7)动态单模激光器(8)分布反馈激光器(9)量子阱激光器(10)表面发射激光器(11)微腔激光器

半导体激光器在半导体激光打标机中的应用

半导体激光器在半导体激光打标机中的应用:半导体激光器因其使用寿命长、激光利用效率高、热能量比YAG激光器小、体积小、性价比高、用电省等一系列优势而成为2010年热卖产品,e网激光生产的国产半导体激光器的出现,加速了以半导体激光器为主要耗材的半导体激光机取代YAG激光打标机市场份额的步伐。

关于氦氖激光器与半导体激光器的对比

波长越短测量精度越高。氦氖激光波长632.8纳米,显然优于半导体激光635纳米和650纳米。 氦氖激光线宽窄稳定性高在诸多激光器中是首屈一指的,这已经是光学界的共识。 半导体激光器的线宽在各种激光器中是最宽的,可以达到几十至几百cm-1,也就是说半导体激光器的单色性是最差的。

胶体量子点激光二极管问世

  新墨西哥州洛斯阿拉莫斯国家实验室的科学家已将精心设计的胶体量子点结合到一种新型LED中,该新型LED包含集成的光学谐振器,从而使LED能够充当激光器。研究人员展示了一种可操作的LED,该LED还可以用作光泵浦的低阈值激光器。为了实现这些目标,他们将光谐振器直接集成到LED架构中,而不会阻碍电荷载

美证实二维半导体存在普适吸光规律

  以往的研究表明,二维碳薄片石墨烯拥有一个通用的光吸收系数。而据物理学家组织网近日报道,现在,美国能源部劳伦斯伯克利国家实验室的科学家首次证实,所有的二维半导体也同样普遍适用于一个类似的简单吸光规律。他们利用超薄半导体砷化铟薄膜进行的实验发现,所有的二维半导体,包括受太阳能薄膜和光电器件行业青睐的