Antpedia LOGO WIKI资讯

新疆理化所染料敏化半导体光解水制氢研究取得系列进展

氢气兼具高燃烧值和无污染两大优势,是最理想的绿色清洁能源。利用取之不竭的太阳能光催化分解水是一种最为理想的制氢技术,此技术的核心和瓶颈在于开发高效的可见光响应半导体光催化剂,长期以来面临着巨大挑战。 鉴于半导体光催化剂的发展现状,结合材料科学和纳米科技的发展前沿,中国科学院新疆理化技术研究所环境科学与技术研究室科研人员将n型有机半导体苝二酰亚胺衍生物及其超分子自组装的概念和方法引入该领域,并将其与典型的半导体光催化剂二氧化钛(无机)或石墨相氮化碳(有机)复合,原位构建了一系列新型的复合半导体光催化材料体系,系统研究了该系列复合光催化剂在可见光催化分解水制氢方面的性能,为太阳能光解水制氢用半导体光催化剂的发展提供了新的思路、实验依据和理论支持,并开拓了苝二酰亚胺分子自组装应用的新领域。 该系列研究属于材料、化学、半导体物理、光学、纳米等学科的交叉领域,相关研究成果已陆续发表在RSC Advances,2014, 4, ......阅读全文

赵冰:半导体基底增强拉曼 生命科学单分子研究的新星

  分析测试百科网讯 光谱技术已迈过百年历史长河。中国的光谱分析技术也可追溯到上个世纪50年代,中国的光谱技术也已经从跟跑到了在部分领域领跑的地位。在这背后,老中青科学家,克服了严峻的挑战、付出了辛勤的汗水。伴随着第21届全国分子光谱学学术会议2020年10月底在成都即将召开,中国光学学会光谱专业委

半导体所揭示半导体界面电荷转移机理

  与传统的太阳能电池相比,染料敏化太阳能电池具有原材料丰富、生产过程中无毒无污染、生产成本较低、结构简单、易于制造、生产工艺简单、易于大规模工业化生产等优势,在清洁能源领域具有重要的应用价值。在过去二十多年里,染料敏化太阳能电池吸引了世界各国众多科学家的研究,在染料、电极、电解质等各方面取得了很大

芯片集成度越来越高,故障后失效分析该如何“追凶”-1

随着科技进步,智能化产品与日俱增。从电脑、智能手机,再到汽车电子、人工智能,如今在我们的生产生活中已随处可见。它们之所以能够得以发展,驱动内部收发信号的半导体芯片是关键。我们这里讲的半导体为IC(集成电路)或者LSI(大规模集成电路)。制造的芯片可以分为逻辑芯片、存储芯片、模拟芯片、功率器件。根据摩

解析钎料的电子迁移现象(一)

一、问题的引出电子迁移长期以来用于研究半导体配线缺陷的形成机理及对策。伴随着半导体配线的微细化,流过配线的电流值显著上升。今天VLSI中的Al或Cu线宽为0.1μm、厚0.2μm的截面上,即使只通过1mA的电流,其电流密度也高达106A/cm2。面对如此大的电流密度,只要温度稍有变化,也将很容易导致

研究发现半导体光催化剂中单步两电子转移机理

  8月31日,中科院大连化物所催化基础国家重点实验室及洁净能源国家实验室(筹)太阳能研究部李灿院士团队首次揭示了强碱条件下半导体与分子产氢催化剂之间两电子转移机理,相关研究成果以通讯形式发表在《美国化学会志》上。  该研究团队多年来一直从事半导体与分子催化剂(金属络合物分子)耦合体系的研究,旨在利

研究发现半导体光催化剂中单步两电子转移机理

  8月31日,中科院大连化物所催化基础国家重点实验室及洁净能源国家实验室(筹)太阳能研究部李灿院士团队首次揭示了强碱条件下半导体与分子产氢催化剂之间两电子转移机理,相关研究成果以通讯形式发表在《美国化学会志》上。  该研究团队多年来一直从事半导体与分子催化剂(金属络合物分子)耦合体系的研究,旨在利

发现半导体与分子催化剂之间可能的多电子转移机理

      中科院大连化物所催化基础国家重点实验室及洁净能源国家实验室(筹)太阳能研究部李灿院士团队首次揭示了强碱条件下半导体与分子产氢催化剂之间两电子转移机理,相关研究成果8月31日以通讯形式发表在《美国化学会志》上。  科研人员通过对copy/c

中科院苏州医工所:为你开启健康照明

  在科技的支撑力越来越强大的时代里,人们对于生活质量、健康安全的重视程度日益提升,对照明的需求已不只是表层应用于帮助“看见”,而是更加注重照明产品对人深层次的“看不见”的影响,于是对照明环境的健康舒适度提出了新的要求。视觉生理参数综合测试平台调试  全创新链思路将带来照明健康  11月20日,国家

新型图像传感器像素尺寸破1000纳米极限仅五十纳米

  近日,美国阿拉巴马大学华人教授宋金会领导的科研小组,研制出像素尺寸仅为50纳米的新型图像传感器,大幅度打破了当前数字图像传感器像素尺寸为1000纳米的极限。该研究最近发表在材料类顶级科学期刊《先进材料》上。  自数字图像传感器发明以来,研究者们想尽一切方法来减小像素尺寸,以提高数字图像传感器的分

高永立:不倦探索先进材料超微结构与超快过程

  各行各业的发展都离不开对材料的依赖。材料不仅是现代科学进步的基础,涉及到自然科学门类的方方面面,而且其相关学科已成为新世纪的支柱型科学。  先进材料的超微结构与超快过程研究成为中南大学先进材料超微结构与超快过程研究所所长高永立为之孜孜不倦探索的重要方向。  高永立是高考制度恢复后的首批大学生,1

看我们的室内空气是如何被催化净化的

  催化科学和技术遍及人们生活的各个领域,从衣、食、住、行到环境、健康、生命及国防安全。当前中国的石油炼制能力已经超过5 亿吨/年,炼钢产能超过亿吨/年,化肥生产量居世界首位,亦已成为世界最大的三大合成材料(合成纤维、合成橡胶、合成树脂)生产国和需求国。据统计,化学工业的80%产值是经催化作用取得,

化学所可见光光催化降解污染物及机理研究取得系列成果

  在国家自然科学基金委、科技部以及中科院的长期支持下,光化学院重点实验室的研究人员在可见光光催化降解有机污染物及其机理方面进行了十几年的系统深入研究。最近应英国皇家化学会综述期刊Chemical Society Reviews的邀请,撰写了题为Semiconductor-media

热电阻的测温原理

从物理学中我们知道,导体(或半导体)的电阻值是随着温度的变化而变化的,一般说来,它们之间有如下关系,即通常用电阻温度系数α来描述电阻值随着温度变化而变化这一特性,它的定义是:在某一温度间隔内,温度变化1℃时的电阻相对变化量,单位为1/℃。根据定义,α可用下式表示:金属导体的电阻一般随温度升高而增大,

杨芃原:微流控技术有望十年内得到普遍应用

  我国在微全分析领域的发展状况   我国近年来在微全分析领域的研究中取得了巨大的进展,发表的文章数量已仅次于美国位居世界第二位,这样的学术成绩在我国其它研究领域是非常罕见的。但同时杨教授也指出,虽然我国在中上等水平的文章中已具备很强的竞争实力,但还是缺乏一些顶尖级的研究成果,如在《Nature》

Nano Letters:半导体界面电荷传输规律

  第一作者:谢关才;通讯作者: 宫建茹  通讯单位 : 国家纳米科学中心  论文DOI:10.1021/acs.nanolett.8b04768  研究背景  向自然学习并力争超越是推动人类社会进步的一个永恒的主题。主要由于植物分子光吸收等原因的限制,自然界光合作用的效率较低。相比之下,半导体具有

原子力显微镜(AFM)主要使用在哪些地方?

在材料科学领域,AFM不但可以获得材料表面的3D形貌、表面粗糙度和高度等信息,而且可以获得材料表面物理性质分布的差异,例如摩擦力、阻抗分布、电势分布、介电常数,压电特性、磁学性质等。在聚合物科学领域,AFM可以获得表面的结构以及材料表面物理性质。对样品进行加热,可以研究聚合物的相变过程;结合环境腔,

原子力显微镜AFM的应用领域

  在材料科学领域,AFM不但可以获得材料表面的3D形貌、表面粗糙度和高度等信息,而且可以获得材料表面物理性质分布的差异,例如摩擦力、阻抗分布、电势分布、介电常数,压电特性、磁学性质等。图片来源于网络  在聚合物科学领域,AFM可以获得表面的结构以及材料表面物理性质。对样品进行加热,可以研究聚合物的

人类拍摄到半导体材料内部电子运动

  英国《自然·纳米技术》杂志11日在线发表论文称,科学家们利用飞秒技术首次成功拍摄到半导体材料内部电子状态变化。该成果将提供对半导体核心器件前所未有的洞察。  自20世纪后期以来,半导体器件技术进步集中且明显,譬如晶体管、二极管以及太阳能电池等。这些器件的核心,正是电子在半导体材料中进行的内部运动

记柯俊院士:金属物理奠基人

  “我来自东方,那里有成千上万的人民在饥饿线上挣扎,一吨钢在那里的作用,远远超过一吨钢在英美的作用,尽管生活条件远远比不过英国和美国,但是物质生活并不是唯一的,更不是最重要的。”柯俊 1917年出生于吉林省长春市,祖籍浙江省黄岩县。北京科技大学教授,中国科学院院士。多年从事合金中相

株洲市新增两家国家重点实验室,将带动配套产业升级

  “株洲又新增两张‘国字号’名片。”9月15日,记者从株洲科技平台建设情况新闻发布会上获悉,在科技部近期公布的第三批75家企业国家重点实验室名单中,湖南省有3家,其中两家在株洲。  我市新增的两家重点实验室,分别为依托中车株洲电力机车有限公司建设的“大功率交流传动电力机车系统集成国家重点实验室”,

苏州纳米所印刷碳纳米管晶体管与CMOS电路研究获进展

  由于碳纳米管具有独特的电学性能、机械性能、优越的物理和化学稳定性以及容易墨水化,使得碳纳米管成为印刷薄膜晶体管,尤其是印刷柔性薄膜晶体管最理想的半导体材料之一。尽管半导体碳纳米纯化技术已日趋成熟,但高纯度半导体碳纳米管的可印刷墨水批量化制备、碳纳米管的准确定位和高性能n型印刷碳纳米管晶体管的构建

Bi2O3半导体光催化反应中催化活性物质的性质

  Nat. Commun.:Bi2O3半导体光催化反应中催化活性物质的性质  在光催化系统中发现真正的催化活性位点,可以对光催化过程有更全面的了解,可有助于提高光催化系统的效率。Bi2O3是一种多相光催化剂,能够催化多种重要的可见光驱动的有机转化。然而,目前对光催化过程中所涉及的有效催化剂的深入研

基金委发布2019年与埃及合作项目初审结果

2019年度国家自然科学基金委员会与埃及科学研究技术院合作研究项目初审结果通知  根据国家自然科学基金委员会(NSFC)与埃及科学研究技术院(ASRT)签署的合作协议及后续达成的共识,2019年双方在生命科学(Life Sciences)及工程与材料科学(Engineering and Materi

288项!国家自然基金委公布国际合作研究项目初审结果

  2019年度国家自然科学基金委员会与埃及科学研究技术院合作研究项目初审结果通知  根据国家自然科学基金委员会(NSFC)与埃及科学研究技术院(ASRT)签署的合作协议及后续达成的共识,2019年双方在生命科学(Life Sciences)及工程与材料科学(Engineering and Mate

新型高级氧化技术处理垃圾渗滤液的研究进展

  垃圾填埋法是城市生活垃圾处理中应用最为广泛的方法之一,产生的垃圾渗滤液是一种成分复杂,难处理的高浓度有机废水[1]。随着垃圾填埋年限的延长,渗滤液中的可生物降解有机化合物浓度在不断的降低,虽然不可生物降解化合物的浓度也在减少,但与可生物降解有机化合物相比是一个很小的比例,其BOD5/COD 的比

288项!国家自然基金委公布国际合作研究项目初审结果

  国家自然基金委公布与金砖国家、埃及、日本、智利的国际合作项目初审结果,其中金砖国家146项、埃及82项、日本35项,智利25项通过初审,具体如下。  2019年度国家自然科学基金委员会与金砖国家科技创新框架计划合作研究项目初审结果通知  根据中国国家自然科学基金委员会(NSFC)、中华人民共和国

纳米二氧化钛(JR05)在液体壁纸、乳胶漆中的应用

纳米乳胶漆、纳米液体壁纸不仅能解决现有涂料耐沾污性差、耐候性差、不环保等技术问题,同时赋予涂料自清洁、杀菌消毒、净化空气等新功能,是一种多功能绿色环保涂料。制备工艺简单,性价比高,具有很好的经济效益和社会效益。    一、纳米二氧化钛(JR05)的杀菌功能 &

金属纳米材料诱导的可见光催化

可见光激发下载流子在Au/TiO2体系中的分离  直接利用光来驱动化学反应的光催化在解决能源短缺和环境问题方面具有极大的潜力,而开发高效的可见光(约占太阳光能量的43%)响应材料是目前光催化领域所面临的一个重要挑战。近些年兴起的以Au, Ag, Cu等金属光吸收为驱动力的光催化为解决宽带隙半导体(E

中科院突破高效LED芯片及材料关键技术

  在“十一五”国家863计划新材料领域项目的支持下,由中国科学院半导体研究所承担的“高效氮化物LED材料及芯片关键技术”创新团队项目课题,通过技术辐射和转移、人才培养以及国际交流合作等方式,实现了先进技术的引进、消化、吸收、再创新,从而提高了中国半导体照明产业的国际竞争能力,推动了中国半导体照明工

基金委与瑞典研究理事会合作研究项目初审结果

2018年度国家自然科学基金委员会与瑞典研究理事会合作研究项目初审结果通知 根据国家自然科学基金委员会(NSFC)与瑞典研究理事会(VR)双边合作协议,2018年双方共同在“Renewable energy”和“Biotechnology”领域征集和资助中瑞合作研究项目。经过公开征集,