美发现保持神经活动稳定新机制有助揭示神经科学重要问题

最近,美国约翰·霍普金斯大学科学家领导的研究小组在《自然·神经科学》杂志上发表论文称,神经元会通过对DNA的小“手术”不断调节自身全天候的活动水平。这一发现有助于揭示神经科学中许多重要的问题。 “我们曾认为细胞一旦完全成熟,其DNA就是完全稳定的,包括上面附带的分子标签,这些标签控制着基因并保持细胞‘身份’。”约翰·霍普金斯大学的宋红军(音译)教授说,“这项研究表明,某些细胞确实能一直改变它们的DNA,而这只是为了履行日常功能。” 这种改变称为DNA去甲基化,这一过程涉及DNA切除,会让DNA变得不稳定,容易变异,所以除用于纠正错误,大部分细胞都很少用它。但最近有研究表明,哺乳动物的大脑具有高度动态的DNA修复活动,且远比身体其他部位要多。在大脑这样一个如此脆弱的组织中进行有风险的活动,让宋红军领导的研究小组迷惑不已。 神经元的主要工作是通过突触与其它神经元通讯。在每个突触,发起方神经元会释放化学信息素,其中包含的信息......阅读全文

脑片膜片钳实验方法(二)

二、海马脑片的膜片钳记录1、将刺激电极放置在含突触前纤维脑片区域附近在突触传递的研究中,应该同时记录突触前和突触后神经元的电信号,虽然,并不是所有突触前神经元胞体的动作电位均可传导至突触 (Vincent, 1996)。由于在突触前和突触后两个神经元上同时做膜片钳记录较困难,因此,需要用其它的方

tunel染色所有的神经细胞都着色了怎么区分神经元

tunel染色所有的神经细胞都着色了怎么区分神经元(1)兴奋在神经元之间的传递是通过突触进行的.当给C处一个适宜刺激,神经递质刺激使神经元兴奋,引起神经末梢释放的特异性受体进入突触间隙,随后与突触后膜上的结合,导致A处的神经元产生兴奋.兴奋在神经纤维上的传导形式是电信号,在神经元之间的传递是化学信号

()黄皮酰胺酰胺有利于海马回CA1区突触的突触传递

中国医学科学院北京协和医学院陈乃宏研究员团队近日在European Journal of  Pharmacology发表文章,主要探讨了(-)黄皮酰胺酰胺对海马回CA1区突触(hippocampal Schaffer  collateral-CA1 synapses)信号传递的作用。 黄皮酰胺是从民

为什么大脑神经元时刻在给DNA做手术

  约翰霍普金斯的科学家们发现,神经元们都是冒险家:它们整天,利用微小的"DNA手术"来切换它们的活性。由于这些活性水平对于学习,记忆和大脑疾病都很重要,研究人员们认为,他们的发现将对一系列重要的问题有所解释。这项研究在线发表于4月27日的Nature Neuroscience杂志上。  "我们过去

西湖大学:揭示神经元调控大脑血流新路径

  该校生命科学学院特聘研究员贾洁敏团队的相关研究,揭示了神经元调控大脑血流新路径。  他们发现了一座架在神经元与血管之间的“新桥梁”——类突触(NsMJ)。通过类突触,谷氨酸能神经元可直接作用于动脉血管平滑肌细胞,导致动脉舒张,诱发大脑功能性充血。相关研究成果日前刊发在《自然·神经科学》期刊上。 

简述兴奋性神经递质的作用机理

  一、抑制作用的神经递质:如γ-氨基丁酸、甘氨酸等。  二、递质的作用对象  兴奋和抑制的对象不一定,如果该神经递质存在于突触间隙,则作用对象是神经细胞,若是存在于神经末梢,则作用对象是肌肉细胞。  三、递质的作用机理:  1.兴奋性递质作用机理:  突触小泡释放兴奋性化学递质,这些兴奋性化学递质

《Science》极早期发育时期惊现神经突触

  大脑新皮层(cerebral neocortex)掌权人脑功能,如有意识的思维和语言。在新皮层中,数十亿神经元被精确排列成有序的6层结构。在婴儿时期,这些神经元有次序地生成,再迁移至大脑表面。  “亚板神经元(subplate neurons)”是新皮层首批出现的神经元之一,它们在新皮层发育时短

VIB研究发现修复神经元之间沟通交流的机制

  2015年11月27日——VIB/鲁汶大学(KU Leuven)Patrik Verstreken教授领导的研究团队揭示了一种机制的详细细节,为神经元之间的沟通交流提供了更多的洞察。该研究阐明了受损的神经突触(synapses)——神经元之间的连接点——如何被修复以保持神经元之间的交流处于最佳水

神经网络电活动调控抑制性突触稳态可塑性的分子机制

  12月1日,《神经科学杂志》以封面文章的形式发表了中科院上海生命科学研究院神经所树突发育与神经环路形成研究组的论文Postsynaptic spiking homeostatically induces cell-autonomous regulation of inhibitor

美发现保持神经活动稳定新机制-有助揭示神经科学重要问题

  最近,美国约翰·霍普金斯大学科学家领导的研究小组在《自然·神经科学》杂志上发表论文称,神经元会通过对DNA的小“手术”不断调节自身全天候的活动水平。这一发现有助于揭示神经科学中许多重要的问题。  “我们曾认为细胞一旦完全成熟,其DNA就是完全稳定的,包括上面附带的分子标签,这些标签控制着基因并保

美发现保持神经活动稳定新机制

  最近,美国约翰·霍普金斯大学科学家领导的研究小组在《自然·神经科学》杂志上发表论文称,神经元会通过对DNA的小“手术”不断调节自身全天候的活动水平。这一发现有助于揭示神经科学中许多重要的问题。   “我们曾认为细胞一旦完全成熟,其DNA就是完全稳定的,包括上面附带的分子标签,这些标签控制着基因并

神经所发现大脑皮层维持其兴奋和抑制平衡的新策略

  3月22日,《公共科学图书馆•生物学》(PLoS Biology)发表了中科院上海生命科学研究院神经所舒友生研究组的最新成果:大脑皮层维持兴奋和抑制动态平衡的新机制,即神经元的膜电位水平可以调控反馈抑制的强度。该工作由朱洁、江漫、杨明坡和侯晗等合作完成。同期的PLoS Biolo

美国开发出“大脑芯片”人造突触

  人脑约有一千亿个神经元,神经元通过100万亿突触(即神经元之间的空间)传递指令,使大脑能够以闪电般的速度识别图案,完成记忆并执行其它学习任务。新兴领域“神经形态计算”的研究人员试图设计出像人脑一样工作的计算机芯片,通过模拟信号工作,类似于神经元。通过这种方式,小型神经形态芯片可以像大脑一样有效地

美国开发出“大脑芯片”人造突触

  人脑约有一千亿个神经元,神经元通过100万亿突触(即神经元之间的空间)传递指令,使大脑能够以闪电般的速度识别图案,完成记忆并执行其它学习任务。新兴领域“神经形态计算”的研究人员试图设计出像人脑一样工作的计算机芯片,通过模拟信号工作,类似于神经元。通过这种方式,小型神经形态芯片可以像大脑一样有效地

神经元细胞根据神经元的机能分类介绍

  1.感觉(传入)神经元:  接受来自体内外的刺激,将神经冲动传到中枢神经。神经元的末梢,有的呈游离状,有的分化出专门接受特定刺激的细胞或组织。分布于全身。在反射弧中,一般与中间神经元连接。在最简单的反射弧中,如维持骨骼肌紧张性的肌牵张反射,也可直接在中枢内与传出神经元相突触。一般来说,传入神经元

关于脑神经递质的基本介绍

  脑神经递质是帮助信号从一个神经细胞传递到另外一个神经细胞的化学物质。 [1] 它与突触后细胞膜上的特异性受体相结合,影响突触后神经元的膜电位或引起效应细胞的生理效应,从而完成突触信息传递。通俗地说,神经递质就是使突触前的信息能顺利越过突触间隙传递到突触后细胞的化学物质。由于神经元是以生物电的形式

瑞士发现一种影响听觉的蛋白

  瑞士洛桑联邦工学院科研人员日前宣布,他们发现一种能影响听觉的蛋白。   各个神经元之间有上千个触点——突触,突触负责保证神经元之间的信息交换。人类目前发现的大脑负责听觉区域中的最大突触形状酷似花萼,1893年由德国神经学家黑尔德发现。因为有这种花萼型突触,听觉信息可在几分之一毫秒内得到处理,信

小胶质细胞在复杂性热惊厥中发挥保护作用的新机制

  11月3日,浙江大学基础医学院/附属二院胡薇薇教授和药学院陈忠教授团队在Cell Reports在线发表了题为“Microglial displacement of GABAergic synapses is a protective event during complex febrile s

利用双色钙成像对单个神经元反应特性来源的研究成果

  7月1日,中科院上海生科院神经所郭爱克研究组在PNAS杂志发表一篇文章,该文章的研究工作引入了一种新的双色钙成像方法,并利用这种方法对果蝇中单个蘑菇体神经元对嗅觉刺激的反应特性是如何由前级的投射神经元转换而来进行了探讨。   在绝大多数情况下,单个神经元从许多突触前神经元接收输入,并将这些输入

突触核蛋白的生理功能介绍

  抑制多巴胺神经递质的释放:  Abeliovich等证实α-突触核蛋白基因敲除的小鼠黑质在成对电刺激条件下多巴胺释放量增加,而小鼠的生理活动不受影响,并且大脑的神经元结构保持完整,但α-突触核蛋白可能在病理条件下发挥保护作用[24]。  调节突触膜的囊泡释放:  Murphy等利用反义寡核苷酸技

首次发现一对跨神经细胞的黏附分子,可控制多巴胺突触

  北京时间2021年6月17日晚23时,美国凯斯西储大学医学院神经科学系梅林教授研究组在Current Biology期刊发表论文——“In trans neuregulin3-Caspr3 interaction controls DA axonal bassoon cluster develo

美研究发现自闭症患者比正常人大脑存在过多“突触”

  美国哥伦比亚大学一项新研究发现,与正常人相比,自闭症儿童及青少年的大脑内存在过多“突触”,一旦用药物消除这些多余突触,实验动物自闭症行为便可有所改善。这一发现有助于探索治疗自闭症的新策略。   大脑中一个神经元与另一个神经元相接触的部位叫做突触。这项研究第一作者、哥伦比亚大学助理教授汤国梅对新

研究揭示视觉皮层回路兴奋—抑制平衡调控方式

   中科院上海有机所生物与化学交叉研究中心何凯雯课题组联合约翰霍普金斯大学Alfredo Kirkwood团队合作首次发现锥体神经元的E/I平衡并非恒定,而是在一天中发生周期性的振荡。该研究成果近日发表于《神经元》。  神经元对信息的处理和传播依赖于谷氨酸能这类兴奋性突触传递神经信号,同时也依赖于

神经递质的作用及结构特点

神经递质(neurotransmitter)是神经元之间或神经元与效应器细胞如肌肉细胞、腺体细胞等之间传递信息的化学物质。根据神经递质的化学组成特点,主要有胆碱类(乙酰胆碱,acetylcholineAch)、单胺类(去甲肾上腺素、多巴胺和5-羟色胺)、氨基酸类(兴奋性递质如谷氨酸和天冬氨酸;抑制性

Nature:一波三折终证实syt7基因控制人类思考、学习和记忆

  我们的大脑是连通性的奇迹,充满着彼此间持续沟通的细胞。这种沟通通过突触实现。突触是被称作神经递质的化学物从一种神经元转移到另一种神经元的转接点,这种转移允许我们思考、学习和记忆。  科学家们已知这些突触经常需要获得一种强化来发送信息穿过神经元分界线。但是这种突触强化(synaptic boost

关于NMDA受体的分布介绍

  一般认为,NMDA受体主要分布在神经细胞的突触后膜。在兴奋性神经元,NMDA受体主要分布在树突棘头的突触后膜,且主要分布在突触后致密区(postsynaptic density, PSD)。但近年来的研究显示,NMDA受体不仅存在于突触后膜,还存在于突触前膜。不仅分布于突触后致密区,还分布于PS

科学家发现神经元与血管的“新桥梁”

原文地址:http://news.sciencenet.cn/htmlnews/2024/1/515369.shtm西湖大学生命科学学院特聘研究员贾洁敏团队发现了一座横架在神经元与血管之间的“新桥梁”——“类突触连接(NsMJ)”。通过它,谷氨酸能神经元可以直接作用于动脉血管平滑肌细胞,导致动脉舒张

中科院JBC文章发表神经学研究新成果

  来自中科院上海生命科学研究院、中国科学院大学的研究人员在神经生物学研究中获得新发现,证实神经活动调控Somatostatin表达,通过突触后生长抑素受体4(Somatostatin Receptor 4)减少了树突棘密度,降低了兴奋性突触传递。相关论文发表在国际期刊《生物化学杂志》(JBC)

Nature:人类思考背后的作用机制

  我们的大脑拥有令人惊奇的连通性,里面挤满了细胞,它们之间不断地进行着沟通。这种沟通发生在突触之间——突触是神经递质从一个神经元跳跃到另一个神经元的中转站,可让我们思考,以进行学习和记忆。  研究人员已经知道,这些突触往往需要一个刺激,才能让信息发送穿过神经元分裂。但这个刺激来自哪里,一直都是一个

突触核蛋白抗细胞凋亡作用

  Alves da Costa等发现与模拟转染的TSM1型神经元对照,野生型的α-突触核蛋白能够显著地减弱三种不同的细胞凋亡诱导剂星孢菌素、依托泊苷和神经酰胺C2对胞内半胱天冬酶(caspase)的激活[30],同样这可能与α-突触核蛋白的伴侣样蛋白作用有关;Ostrerova等也发现α-突触核蛋