NatureMedicine:小分子可促进缓解心脏衰竭

在心脏细胞中,心肌肌质网的钙离子相关的ATP合成酶(SERCA2a)的表达和活性的降低,被认为是心脏衰竭的标志。这个酶(SERCA2a)是一个与钙离子循环相关的关键性转运离子泵。之前他们发现了一种转录后修饰,即可反转的SUMO化修饰(类似于泛素化修饰),可以调节酶SERCA2a的功能进而影响心脏的功能。这种SUMO修饰可能在多方面影响着细胞的功能。就这个酶SERCA2a而言,存在着多种小的SUMO修饰因子。例如,早期的研究表明,在啮齿动物和其他大型动物的模型上,心脏衰竭可能通过转入一种这样的SUMO修饰因子SUMO-1基因,可以恢复心脏的功能。 来自美国纽约的研究者们发现了一种小分子N106,可以增强酶SERCA2a的SUMO化修饰。这个分子N106可直接激活一种E1连接酶,进而增加SUMO化修饰。通过N106分子处理,小鼠心肌培养细胞的收缩性明显增强,还可以显著提升心脏衰竭小鼠的心室收缩功能。最新的研究发表在新一期的《N......阅读全文

蒲慕明小组发现泛素连接酶修饰途径

  来自加州大学伯克利分校Helen Wills神经科学研究所等处的研究人员发现了蛋白泛素化途径中的一种关键酶调控的新机制,有助于解释细胞功能蛋白选择性降解。这一研究成果公布在《神经元》(Neuron)杂志上。   领导这一研究的是著名的神经生物学家蒲慕明教授,其现任中科院神经科学研究所所长,

糖肽多肽糖基化修饰

通过化学键将单糖(如葡萄糖、半乳糖)或者多糖连接到多肽上的过程,我们将其称之为多肽糖基化修饰,通过糖基化修饰后得到的多肽,我们称之为糖肽(Glycopeptides);糖肽对膜蛋白功能常常有很重要的影响,对特异的生物学功能起介导作用,比如:对细胞具有保护、稳定、组织及屏障等多方面作用;可作为外源性受

糖基化修饰过程

一、 糖基化修饰蛋白质的糖基化是一种最常见的蛋白翻译后修饰,是在糖基转移酶作用下将糖类转移至蛋白质和蛋白质上特殊的氨基酸残基形成糖苷键的过程。研究表明70%人类蛋白包含一个或多个糖链1%的人类基因组参与了糖链的合成和修饰。二、糖基化修饰功能在参与糖基化形成的过程中,糖基转移酶和糖苷酶扮演了重要的角色

蛋白质的泛素化修饰

蛋白质的泛素化修饰主要发生在赖氨酸残基的侧链,且通常是多聚化 (多泛素化) 过程。被多泛素化修饰的蛋白质会被蛋白酶体(proteasome)识别进而被降解。三种关键的酶共同介导了这一多泛素化过程, 包括泛素活化酶 E1 (ubiquitin activating enzyme),泛素结合酶 E2 (

ADP糖基化修饰是什么

组蛋白的修饰通常有①甲基化②乙酰基化③磷酸化④ADP核糖基化等修饰形式。

蛋白质PEG化修饰与纯化

聚乙二醇具有较广的分子量分布,随着平均分子量的不同,性质也产生差异,当分子量小于1000Da时,聚乙二醇是无色无臭粘稠的液体,高分子量的聚乙二醇则是蜡状白色固体,固体聚乙二醇的熔点正比于分子量,逐渐接近67℃的极限。毒性随分子量的增加而减少,小于400Da的 PEG在体内会经乙醇脱氢酶降解成有毒的代

关于单泛素化修饰的基本介绍

  单泛素化修饰是一种调节信号可以引起靶蛋白的活性、定位以及蛋白质结构的改变从而对蛋白质的胞吞途径、膜泡的出芽、组蛋白的修饰、基因的转录以及蛋白质核内的定位进行调节。单独的泛素本身并没有任何生物功能,它只是一种分子标记蛋白,发挥作用必须在ATP提供能量的前提下依靠泛素途径的相关酶类及蛋白酶体。Gua

简述N糖基化的修饰

  在内质网中糖链的修饰包括切除末端的3分子葡萄糖和b支的末端甘露糖,进入内质网后在各种糖基转移酶和糖苷酶的剪切和加工后最终形成复杂型,杂交型和高甘露糖型的N-糖链。在植物中复杂糖和杂交糖第二个N-乙酰葡糖胺还连接一个木糖,形成植物特有的复杂N-糖的糖型。

PEG修饰及其修饰GLP1的意义

PEG修饰是一个使多肽或蛋白质在治疗或生物技术方面的效力得以提高的重要过程。当PEG以适当的方式连接在蛋白质或多肽上时,它能改变许多的特征,而主要的生物活性功能,如酶活性或特异结合位点,可以保留下来。PEG修饰通过如下几种途径改善药物的性能。首先,PEG连接在蛋白质或多肽的表面上,提高了它的分子大小

多肽荧光标记——FITC修饰和AMC修饰

  荧光标记所依赖的化合物称为荧光物质。荧光物质是指具有共轭双键体系化学结构的化合物,受到紫外光或蓝紫光照射时,可激发成为激发态,当从激发态恢复基态时,发出荧光。荧光标记技术指利用荧光物质共价结合或物理吸附在所要研究分子的某个基团上,利用它的荧光特性来提供被研究对象的信息。荧光标记的无放射物污染,操

多肽荧光标记——FITC修饰和AMC修饰

  荧光标记所依赖的化合物称为荧光物质。荧光物质是指具有共轭双键体系化学结构的化合物,受到紫外光或蓝紫光照射时,可激发成为激发态,当从激发态恢复基态时,发出荧光。荧光标记技术指利用荧光物质共价结合或物理吸附在所要研究分子的某个基团上,利用它的荧光特性来提供被研究对象的信息。荧光标记的无放射物污染,操

翻译后修饰

中文名翻译后修饰外文名Post-translational modification定义翻译后修饰是指蛋白质在翻译后的化学修饰。对于大部分的蛋白质来说,这是蛋白质生物合成的较后步骤。

RNA加工修饰

中文名RNA加工修饰所属领域生物学定义RNA加工修饰,主要加工方式是切断和碱基修饰,真核生物tRNA前体一般无生物学特性,需要进行加工修饰。

sumo化与磷酸化修饰联合分析

随着质谱技术的不断进步,大规模修饰组学的方法也越来越成熟,PTM作为生物体内非常重要的生理现象也逐步被揭示出参与各项生命活动。今天我们就一起来学习一篇运用质谱技术对磷酸化修饰和类泛素化修饰鉴定,找出两种修饰联合作用对在DNA复制损伤压力时的响应。该篇文献来自哥本哈根大学的研究人员于2017年10月发

糖基化修饰的基本原理

一、 糖基化修饰蛋白质的糖基化是一种最常见的蛋白翻译后修饰,是在糖基转移酶作用下将糖类转移至蛋白质和蛋白质上特殊的氨基酸残基形成糖苷键的过程。研究表明70%人类蛋白包含一个或多个糖链1%的人类基因组参与了糖链的合成和修饰。二、糖基化修饰功能在参与糖基化形成的过程中,糖基转移酶和糖苷酶扮演了重要的角色

糖基化修饰的基本原理

  一、 糖基化修饰   蛋白质的糖基化是一种最常见的蛋白翻译后修饰,是在糖基转移酶作用下将糖类转移至蛋白质和蛋白质上特殊的氨基酸残基形成糖苷键的过程。研究表明70%人类蛋白包含一个或多个糖链1%的人类基因组参与了糖链的合成和修饰。   二、糖基化修饰功能   在参与糖基化形成的过程中,糖基转

组蛋白甲基化修饰研究再获突破

  日前,复旦大学徐彦辉课题组在组蛋白甲基化修饰研究领域获得新进展,相关成果发布在《分子细胞》上,该项研究得到了国家自然科学基金面上项目的资助。  组蛋白甲基化修饰是一种非常重要的表观遗传修饰,参与调节异染色质形成、X染色体失活、基因印记及DNA的损伤修复等多种生命过程。关于组蛋白去甲基化酶的研究是

解析糖基化修饰及位点分析

  经常听到糖基化修饰,今天带大家一探究竟。什么是糖基化修饰呢?糖基化是在糖基转移酶的控制下,蛋白质或脂质附加上糖类的过程,发生于内质网和高尔基体。糖基化修饰是一类非常重要的翻译后修饰,大部分膜蛋白和分泌蛋白均为糖蛋白,糖基化修饰不仅影响蛋白质的空间构象、活性、运输和定位,同时在信号转导、分子识别,

糖基化修饰的基本原理

  一、 糖基化修饰   蛋白质的糖基化是一种最常见的蛋白翻译后修饰,是在糖基转移酶作用下将糖类转移至蛋白质和蛋白质上特殊的氨基酸残基形成糖苷键的过程。研究表明70%人类蛋白包含一个或多个糖链1%的人类基因组参与了糖链的合成和修饰。   二、糖基化修饰功能   在参与糖基化形成的过程中,糖基转

多肽荧光标记——FITC修饰和AMC修饰(二)

(2)在整条肽中的某个Lys侧链接入FITC,Lys侧链为末端为-NH2的四碳直链烷基,直接起到了降低空间位阻的作用。这种修饰方式能够灵活的在整条肽中任何位置进行FITC修饰,而不仅仅局限于末端。我们所采用的FITC修饰多肽的两种形式,都具有操作简便,成功率高,容易分离纯化等优点。2.AMC修饰7-

多肽荧光标记——FITC修饰和AMC修饰(一)

荧光标记所依赖的化合物称为荧光物质。荧光物质是指具有共轭双键体系化学结构的化合物,受到紫外光或蓝紫光照射时,可激发成为激发态,当从激发态恢复基态时,发出荧光。荧光标记技术指利用荧光物质共价结合或物理吸附在所要研究分子的某个基团上,利用它的荧光特性来提供被研究对象的信息。荧光标记的无放射物污染,操作简

蛋白质的糖基化修饰主要分为

特征 N-连接 O-连接合成部位 粗面内质网 主要在高尔基体合成方式 来自同一个寡糖前体 一个个单糖加上去与之结合的氨基酸残基 天冬酰氨 丝氨酸、苏氨酸、羟脯、羟赖最终长度 至少5个糖残基 1-4个糖残基第一个糖残基 N-乙酰葡萄糖胺 N-乙酰半乳糖胺大概清楚了吧! 蛋白质糖基化是一种蛋白质修饰,作

干货分享——揭开糖基化修饰的神秘面纱

  相对于磷酸化、乙酰化修饰等相对较为简单的PTM来讲,糖基化修饰稍显复杂和多样,各位看官对糖基化修饰的知识了解多少呢?是否又对O糖、N糖傻傻分不清楚呢?没关系,今天小编带您一起走进糖的世界,一起揭开糖基化修饰的神秘面纱。  糖基化修饰主要发生在内质网和高尔基体。主要过程是将糖基在糖基转移酶作用下将

研究抗体药物的糖基化修饰为何重要?

  在众多的蛋白质翻译后修饰中,糖基化修饰是最重要和最复杂的修饰之一,也是评价抗体的关键质量属性之一。单抗药物功能的实现与其糖基化修饰密切相关,糖基化修饰会影响蛋白的性能,如构象、稳定性、溶解度、药物代谢动力学、活性及免疫原性。本文中,笔者就糖基化及其对抗体药物的稳定性/半衰期、安全性及生物活性进行

为何要关注抗体药物的糖基化修饰?

   在众多的蛋白质翻译后修饰中,糖基化修饰是最重要和最复杂的修饰之一,也是评价抗体的关键质量属性之一。单抗药物功能的实现与其糖基化修饰密切相关,糖基化修饰会影响蛋白的性能,如构象、稳定性、溶解度、药物代谢动力学、活性及免疫原性。本文中,笔者就糖基化及其对抗体药物的稳定性/半衰期、安全性及生物活性进

修饰系统的定义

中文名称修饰系统英文名称modification system定  义参与修饰作用的组成与机制。应用学科生物化学与分子生物学(一级学科),总论(二级学科)

修饰碱基的概念

又称稀有碱基,这些碱基在核酸分子中含量比较少,但他们是天然存在不是人工合成的,是核酸转录之后经甲基化、乙酰化、氢化、氟化以及硫化而成。

核酸的修饰酶

The restriction/modification system in bacteria is a small-scale immune systemfor protection from infection by foreign DNA. W. Arber and S. Linn (1969

修饰碱基的概念

又称修饰碱基,这些碱基在核酸分子中含量比较少,但他们是天然存在不是人工合成的,是核酸转录之后经甲基化、乙酰化、氢化、氟化以及硫化而成。

DNA修饰的概念

中文名称DNA修饰英文名称DNA modification定  义DNA合成后,通过一系列化学加工使其结构发生某些改变。如DNA的甲基化等。应用学科遗传学(一级学科),分子遗传学(二级学科)