CaryDavies成为堀场任荧光产品经理
分析测试百科网讯 2015年11月9日,堀场任命Cary Davies为其荧光部门全球产品线经理。 Cary Davies在荧光光谱领域有29年的丰富经验,他在Photon Technology International Inc. (PTI))公司担任销售、销售经理和产品经理职位,该公司于去年被堀场收购。他也在PTI姐妹公司Optical Building Blocks Corp担任全球产品线经理。 堀场提供应用于纳米技术、半导体、制药、化工、光电、环境和生命科学的拉曼光谱、荧光寿命成像显微镜及其他光谱仪器。 ......阅读全文
原子荧光光谱仪优点
优点有较低的检出限,灵敏度高。特别对Cd、Zn等元素有相当低的检出限,Cd可达0.001ng·cm-3、Zn为0.04ng·cm-3。现已有2O多种元素低于原子吸收光谱法的检出限。由于原子荧光的辐射强度与激发光源成比例,采用新的高强度光源可进一步降低其检出限。干扰较少,谱线比较简单,采用一些装置,可
荧光光谱仪的工作原理
由光源氙弧灯发出的光通过切光器使其变成断续之光以及激发光单色器变成单色光后,此光即为荧光物质的激发光,被测的荧光物质在激发光照射下所发出的荧光,经过单色器变成单色荧光后照射于测样品用的光电倍增管上,由其所发生的光电流经过放大器放大输至记录仪,激发光单色器和荧光单色器的光栅均由电动机带动的凸轮所控制,
X荧光光谱仪制样要求
X荧光光谱仪主要用途 x荧光光谱仪根据各元素的特征X射线的强度,也可以获得各元素的含量信息。 近年来,X荧光光谱分析在各行业应用范围不断拓展,已成为一种广泛应用于冶金、地质、有色、建材、商检、环保、卫生等各个领域,特别是在RoHS检测领域应用得zui多也zui广泛。 大多数分析元素均可用其进
荧光光谱实验技术——时间分辨技术
时间分辨发光光谱技术是基于不同发光体的发光衰减速率的不同,配置使用带时间延迟设备的脉冲光源(闪光灯或激光器)和带有门控时间电路的检测器件,通过选定延迟时间td和门控时间tg,对发射单色器进行扫描,得到时间分辨发射光谱,从而实现对光谱重叠但是发光寿命不同的组分进行分辨和分别测定。或者固定激发与发射波长
X荧光光谱法测ROHS
使用荧光光谱分析法(XRF)进行RoHS验证-X荧光光谱测ROHS随着欧盟RoHSzui后期限的临近,很多公司都开始采用无铅化工艺,但要确保工艺的一致性,有效的检测方法是必不可缺的,荧光光谱分析法(XRF)就是其中之一。许多晶圆制造厂已开始用XRF法在薄镀层上进行无危害性成分测量,而且还用它探测扩散
X射线荧光光谱仪结构
该系统由X射线发生器、光谱仪主体部分、电气部分及系统控制器、计算机部分组成。3.1 X射线发生器 X射线发生器由高压变压器及管流管压控制单元、X射线管、热交换器。 3.1.1高压变压器及管流管压控制单元 产生高稳定的高压加到X射线管上用以产生X射线。这里利用高电压加速的高速电子轰击X射线管金属靶面产
X射线荧光光谱仪概述
X射线荧光光谱仪具有重现性好,测量速度快,灵敏度高的特点。能分析B(5)~U(92)之间所有元素。样品可以是固体、粉末、熔融片,液体等,分析对象适用于炼钢、有色金属、水泥、陶瓷、石油、玻璃等行业样品。无标半定量方法可以对各种形状样品定性分析,并能给出半定量结果,结果准确度对某些样品可以接近定量水
X射线荧光光谱法优点
X射线荧光光谱法-----原级X射线发射光谱法首先,与原级X射线发射光谱法比,不存在连续X射线光谱,以散射线为主构成的本底强度小,谱峰与本底的对比度和分析灵敏度显著提高,操作简便,适合于多种类型的固态和液态物质的测定,并易于实现分析过程的自动化。样品在激发过程中不受破坏,强度测量的再现性好,以及便于
原子荧光光谱的技术特点
灵敏度高:荧光分析的最大特点是灵敏度高,通常情况下要比分光光度计的灵敏度高出2-3个数量级。选择性强:包括激发光谱和发射光谱,在鉴定物质时,通过选择波长可以使分子荧光分析有多种选择。试样量少和方法简便。能提供比较多的物理参数:如激发光谱、发射光谱、荧光强度、量子产率、荧光寿命、荧光偏振等参数。这些参
什么是X荧光光谱仪
X荧光光谱仪(XRF)由激发源(X射线管)和探测系统构成。X射线管产生入射X射线(一次X射线),激发被测样品,产生X荧光(二次X射线),探测器对X荧光进行检测。 技术原理 受激发的样品中的每一种元素会放射出二次X射线,并且不同的元素所放射出的二次X射线具有特定的能量特性或波长特性。探测系统
X荧光光谱仪的保养
X荧光光谱仪工作的外部环境 1、周围强磁场干扰 设备合理的工作环境,要求在没有电机、振动、电磁、高压或有高频率电焊器等电磁干扰的地方安装,否则会干扰设备的谱形或造成设备不能正常工作。 2、环境温度,湿度的影响 应保持室温20~25℃为宜,气温过高或过低都会
X荧光光谱仪制样方法
一、X荧光光谱仪分析方法是一个相对分析方法,任何制样过程和步骤必须有非常好的重复操作可能性,所以用于制作标准曲线的标准样品和分析样品必须经过同样的制样处理过程。 X 射线荧光实际上又是一个表面分析方法,激发只发生在试样的浅表面,必须注意分析面相对于整个样品是否有代表性。此外,样品的平均粒度和粒度
X射线荧光光谱法优点
X射线荧光光谱法-----原级X射线发射光谱法首先,与原级X射线发射光谱法比,不存在连续X射线光谱,以散射线为主构成的本底强度小,谱峰与本底的对比度和分析灵敏度显著提高,操作简便,适合于多种类型的固态和液态物质的测定,并易于实现分析过程的自动化。样品在激发过程中不受破坏,强度测量的再现性好,以及便于
原子荧光光谱仪介绍
利用原子荧光谱线的波长和强度进行物质的定性与定量分析的方法。原子蒸气吸收特征波长的辐射之后,原子激发到高能级,激发态原子接着以辐射方式去活化,由高能级跃迁到较低能级的过程中所发射的光称为原子荧光。当激发光源停止照射之后,发射荧光的过程随即停止。 原子荧光可分为 3类:即共振荧光、非共振荧光和敏化荧光
如何使用X荧光光谱仪
X荧光光谱仪的原理 当能量高于原子内层电子结合能的高能X射线与原子发生碰撞时,驱逐一个内层电子而出现一个空穴,使整个原子体系处于不稳定的激发态,激发态原子寿命约为 (10)-12-(10)-14s,然后自发地由能量高的状态跃迁到能量低的状态.这个过程称为驰过程.驰豫过程既可以是非辐射跃迁,
荧光光谱仪的工作原理
由光源氙弧灯发出的光通过切光器使其变成断续之光以及激发光单色器变成单色光后,此光即为荧光物质的激发光,被测的荧光物质在激发光照射下所发出的荧光,经过单色器变成单色荧光后照射于测样品用的光电倍增管上,由其所发生的光电流经过放大器放大输至记录仪,激发光单色器和荧光单色器的光栅均由电动机带动的凸轮所控制,
活体多光谱荧光成像应用实例(一)
前言传统的活体光学荧光成像(FLI)采用一个激发滤光片和一个发射滤光片。这对于区分靶向信号、可能存在的报告基因信号以及自体荧光组织信号而言有着诸多局限。多光谱(MS)FLI 采用多个激发滤光片和单个发射滤光片,或单个激发滤光片搭配多个发射滤光片,可以产生独特的荧光区域或材料的光谱曲线。(1)因此,图
荧光光谱测量解决方案
激发光与物质作用,产生与激发光不同波长、或者不同频率的光,这就是荧光。当一个短波长的激发光在一点激发物质,我们就能在物质发散的其他位置观察到比激发光更长波长的光。 当某种物质经某种波长的入射光(通常是紫外线或X射线)照射,吸收光能后进入激发态,并且立即退激发并发出比入射光的的波长长的出射光
分子荧光光谱仪操作步骤
分子荧光光谱仪操作步骤HITACHI F-4500型荧光光谱仪操作规程一、开机前准备 1.实验室温度应保持在15℃~30℃之间,湿度应保持在45%~70%之间。 2.确认样品室内无样品后,关上样品室盖。 二、开机 1.打开电源开关(POWER→ON)待风扇正常运转。 2.按(X。LAMR START
原子荧光光谱仪简介
基本介绍利用原子荧光谱线的波长和强度进行物质的定性与定量分析的方法。原子蒸气吸收特征波长的辐射之后,原子激发到高能级,激发态原子接着以辐射方式去活化,由高能级跃迁到较低能级的过程中所发射的光称为原子荧光。当激发光源停止照射之后,发射荧光的过程随即停止。 原子荧光可分为 3类:即共振荧光、非共振荧光和
TCSPC-荧光光谱仪Halcyone-Pico
在时间相关单光子计数中,探测器被用来记录光子,因此探测器决定了光谱范围。根据实验要求的波长范围和时间分辨率,Ultrafast可以提供以下TCSPC探测器选项:应用领域:时间分辨荧光光谱仪用于测量分子发射激发态的寿命。作为光子吸收的结果,分子从基态进入激发态。荧光的寿命对于每个分子来说都是独特的,并
原子荧光光谱仪构造
仪器构造原子荧光分析仪分非色散型原子荧光分析仪与色散型原子荧光分析仪。这两类仪器的结构基本相似,差别在于单色器部分。两类仪器的光路图如右图所示:原子荧光光谱仪仪器构造原理图光源可用连续光源或锐线光源。常用的连续光源是氙弧灯,常用的锐线光源是高强度空心阴极灯、无极放电灯、激光等。连续光源稳定,操作简便
关于荧光光谱仪的简介
荧光光谱仪又称荧光分光光度计,是一种定性、定量分析的仪器。通过荧光光谱仪的检测,可以获得物质的激发光谱、发射光谱、量子产率、荧光强度、荧光寿命、斯托克斯位移、荧光偏振与去偏振特性,以及荧光的淬灭方面的信息。 1、荧光光谱仪的结构:由光源、激发光源、发射光源、试样池、检测器、显示装置等组成。
x射线衍射、x荧光、直读光谱区别
1、X射线衍射仪是利用衍射原理,精确测定物质的晶体结构,织构及应力,精确的进行物相分析,定性分析,定量分析.广泛应用于冶金,石油,化工,科研,航空航天,教学,材料生产等领域. X射线衍射仪是利用X射线衍射原理研究物质内部微观结构的一种大型分析仪器,广泛应用于各大、专院校,科研院所及厂矿企业. 基
荧光光谱仪的原理简介
荧光光谱仪主要是根据荧光光谱和激发光谱来判定物质的性质和量,具体如下:使激发光的波长和强度保持不变,而让荧光物质所发生的荧光通过发射单色器照射于检测器上,调节发射单色器至各种不同波长处,由检测器测出相应的荧光强度,然后以荧光波长为横坐标,以荧光强度为纵坐标作图,即为荧光光谱,又称荧光发射光谱。让
X荧光光谱仪工作原理
X荧光光谱仪主要由激发源(X射线管)和探测系统构成。其原理就是:X射线管通过产生入射X射线(一次X射线),来激发被测样品。 受激发的样品中的每一种元素会放射出二次X射线(又叫X荧光),并且不同的元素所放射出的二次X射线具有特定的能量特性或波长特性。探测系统测量这些放射出来的二次X射线的能量及数量或
原子荧光光谱仪简介
原子荧光光谱仪是什么?原子荧光光谱仪的应用 原子荧光光谱仪是什么呢?原子荧光光谱仪是一种常用的检测仪器,是通过测量待待测元素的原子蒸汽在辐射能激发下产生的荧光发射强度来测定元素含量的,产品在多个行业中都有一定的应用。原子荧光光谱仪的应用利用原子荧光谱线的波长和强度进行物质的定性与定量分析的方法。原子
X射线荧光光谱分析
X射线荧光的激发源使用X射线而不使用电子束,因为使用X射线避免了样品过热的问题。几乎所有的商品X射线荧光光谱仪均采用封闭的X射线管作为初始激发光源。某些较简单的系统可能使用放射性同位素源,而电子激发一般不单独使用在X射线荧光光谱仪中,它仅限于在电子显微镜中X射线荧光分析中使用。X射线荧光谱仪具有快速
荧光检测器激发光谱
荧光属于光致发光,需选择合适的激发光波长(Ex)以利于检测。激发波长可通过荧光化合物的激发光谱来确定。激发光谱的具体检测办法是通过扫描激发单色器,使不同波长的入射光激发荧光化合物,产生的荧光通过固定波长的发射单色器,由光检测元件检测。最终得到荧光强度对激发波长的关系曲线就是激发光谱。在激发光谱曲
荧光光谱定量分析原理?
在低浓度时,溶液的荧光强度与荧光物质的浓度成正比:F=Kc。其中,F为荧光强度,c为荧光物质浓度,K为比例系数。这就是荧光光谱定量分析的依据。 上述关系不适用于荧光物质浓度过高时,荧光物质浓度过高,其荧光强度反而降低。原因有: (1)内滤效应。一是,当溶液浓度过高时,溶液中杂质对入射光的吸收