欧盟研制成功生物仿生超强粘合材料
近年来,随着纳米观测技术的持续进步,如X射线散射源技术和高分辨率显微镜技术,为在分子尺度上研究生物仿生材料、充分揭示大自然奥秘开辟了新路径。欧盟科研理事会(ERC)提供350万欧元全额资助,由德国斯图加特新材料研究所(INM)科研人员领导的欧洲SWITCH2STICK研发团队,研究壁虎(Geckos)超强的爬墙能力发现,壁虎脚上具有超强的细毛粘合力,即壁虎脚依靠接触表面之间的分子相互作用吸引力。 当两种材料相互接触,其表面电子之间的相互作用和相互交换,可产生超强的粘合力,将两种材料紧紧粘合在一起。研发团队利用该发现,研制开发的细纤维硅胶材料和其它高分子聚合物材料,其超强的粘合强度表现在,1平方厘米表面积足够承受1辆汽车的重力。超强的粘合力还来自细纤维材料的自然变形,将所承受的重力合理分散。 生物仿生高强度粘合材料具有很高的溶剂亲和力,除广泛应用于各类粘合剂行业外,研发团队利用该技术开发的机器人手臂抓握技术,通过表面......阅读全文
x射线测厚仪的X射线发射源及接收检测头介绍
采用X射线管和高压电源。X射线管装在一个抽真空后注满油的全密封的油箱中保证绝缘和良好冷却,高压等级根据所造型号不同有所区别,加上传感器具有的温度自动保护与报警功能,提高了X射线管的稳定性和使用寿命。模块化设计、免维护设计方案及规范的制造保证了设备系统高可靠性。 检测头采用电离室和电子前置放大器
X射线显微镜原理
X 射线显微镜是X 射线成像术的一种,也是显微成像技术,即将微观的、肉眼无法分辨看出的结构、图形放大成像以便观察研究的器械。X 射线成像的衬度原理、设备的构造与主要组成部件( 如X射线源、探测器等),但主要是从宏观物体的成像( 如人体器管的医学成像、机械制品的缺陷探伤、机场车站的安全检查等) 出
多晶体衍射为什么要用单色x射线做辐射源
从布拉格公式可以看出,2d sinθ=λ,波长值波动范围越小。测量的晶面间距d值就准确。多色x射线是由波长一定范围的多种波长的光波组成。
X射线显微镜的简介
X 射线显微镜是X 射线成像术的一种,也是显微成像技术,即将微观的、肉眼无法分辨看出的结构、图形放大成像以便观察研究的器械。X 射线成像的衬度原理、设备的构造与主要组成部件( 如X射线源、探测器等),但主要是从宏观物体的成像( 如人体器管的医学成像、机械制品的缺陷探伤、机场车站的安全检查等) 出
X射线显微镜的定义
X 射线显微镜是X 射线成像术的一种,也是显微成像技术,即将微观的、肉眼无法分辨看出的结构、图形放大成像以便观察研究的器械。X 射线成像的衬度原理、设备的构造与主要组成部件( 如X射线源、探测器等),但主要是从宏观物体的成像( 如人体器管的医学成像、机械制品的缺陷探伤、机场车站的安全检查等) 出
X-射线显微镜的概念
X 射线显微镜是X 射线成像术的一种,也是显微成像技术,即将微观的、肉眼无法分辨看出的结构、图形放大成像以便观察研究的器械。X 射线成像的衬度原理、设备的构造与主要组成部件( 如X射线源、探测器等),但主要是从宏观物体的成像( 如人体器管的医学成像、机械制品的缺陷探伤、机场车站的安全检查等) 出发的
天然辐射源宇宙射线
从宇宙空间发射而来的高能粒子流,由初级宇宙射线和次级宇宙射线组成。 ü宇宙射线是来自宇宙空间的高能粒子辐射,它主要是由一些质子、α粒子与原子序数Z>3的核组成的。 ü宇宙射线有较强的贯穿能力,在射向地球时,与大气中与物质原子相碰撞,发生多种类型的反应而产生次级宇宙射线。由于大气层的屏蔽作用,大大减少
X-射线显微镜的技术特点
X 射线显微镜是X 射线成像术的一种,也是显微成像技术,即将微观的、肉眼无法分辨看出的结构、图形放大成像以便观察研究的器械。X 射线成像的衬度原理、设备的构造与主要组成部件( 如X射线源、探测器等),但主要是从宏观物体的成像( 如人体器管的医学成像、机械制品的缺陷探伤、机场车站的安全检查等) 出发的
X-射线显微镜的功能特点
X 射线显微镜是X 射线成像术的一种,也是显微成像技术,即将微观的、肉眼无法分辨看出的结构、图形放大成像以便观察研究的器械。X 射线成像的衬度原理、设备的构造与主要组成部件( 如X射线源、探测器等),但主要是从宏观物体的成像( 如人体器管的医学成像、机械制品的缺陷探伤、机场车站的安全检查等) 出发的
X-射线显微镜的基本构造
聚焦放大元件常用的聚焦镜是多层膜反射聚焦镜和波带片,成像放大元件是波带片。1 多层膜反射聚焦镜多层膜是在基板上重复涂上两种不同的材料制成的人造一维晶体。通常,一种材料是高原子序数的重金属(H),另一种是低原子序数的非金属(L)。这两个层的厚度之和dH + dL构成这多层膜的重复周期d。dH 和dL
X-射线显微镜的成像原理
X 射线显微镜的成像原理与光学显微镜基本上是一样的,遵从几何光学原理,其关键部件是成像和放大作用的光学元件,在光学显微镜中为透镜。由于X 射线的波长很短,在玻璃和一般物质界面上的折射率均接近1,故其成像放大元件不能用玻璃透镜,一般用波带片。此外,它们同样利用吸收衬度和位相衬度成像,同样要求有强光源及
X-射线显微镜的成像原理
X 射线显微镜的成像原理与光学显微镜基本上是一样的,遵从几何光学原理,其关键部件是成像和放大作用的光学元件,在光学显微镜中为透镜。由于X 射线的波长很短,在玻璃和一般物质界面上的折射率均接近1,故其成像放大元件不能用玻璃透镜,一般用波带片。此外,它们同样利用吸收衬度和位相衬度成像,同样要求有强光源及
X射线荧光分析显微镜的用途
可以快速、无损地对样品(固体、粉末、液体、多层镀膜等)的元素组成进行定性、定量分析,还可以通过面扫描功能获得样品的元素面分布图(扫描区域最大可达10 cm×10 cm)。仪器配备的双真空式设计可以在高灵敏度模式或大气氛围模式分析从Na到U的所有元素。可应用于地质矿物、电子电器、生物医药、环境、考
X射线显微镜的成像与构造
X 射线显微镜的成像原理与光学显微镜基本上是一样的,遵从几何光学原理,其关键部件是成像和放大作用的光学元件,在光学显微镜中为透镜。由于X 射线的波长很短,在玻璃和一般物质界面上的折射率均接近1,故其成像放大元件不能用玻璃透镜,一般用波带片。 此外,它们同样利用吸收衬度和位相衬度成像,同样要求有
磁X射线显微镜的相关介绍
同步辐射中所含的辐射均是偏振光,可以是线偏振光,也可以是椭圆或圆偏振光,X 射线也不例外。如果待测物质具有磁性,则具有不成对电子,具有电子自旋磁矩和轨道磁矩。磁矩与不同方向的偏振光的作用是不同的,如用不同方向的圆( 线) 偏振光照射磁性材料,可以得到不同的吸收谱,该性质称圆( 线) 二色性。
X射线显微镜的光源的介绍
三类X 射线光源:实验室X 射线光源(X 射线管)、直线加速器和同步辐射装置。同步辐射是既近平行又高强度,且波长可调而成为最理想的光源。未见有将直线加速器用于X 射线显微镜,实验室光源有使用的,但不能用焦点在10 mm×1 mm 左右的封闭X 射线管,可以用高功率的旋转阳极X 射线管。另外,可用
X射线显微镜的全息显微术
已经知道,像是依靠吸收衬度( 光的振幅)或位相衬度一种信息来显现的。而所谓全息,是指同时含有振幅与位相两种信息。这是Gabor在1948 年提出的。由于记录介质实际可记录的信息只能是光强,也即振幅,故需将位相信息转换成强度来记录。把光照射到试样上,试样以球面波形式将其散射,如有另一束已知振幅与位
X-射线显微镜成像与构造介绍
X 射线显微镜的成像原理与光学显微镜基本上是一样的,遵从几何光学原理,其关键部件是成像和放大作用的光学元件,在光学显微镜中为透镜。由于X 射线的波长很短,在玻璃和一般物质界面上的折射率均接近1,故其成像放大元件不能用玻璃透镜,一般用波带片。此外,它们同样利用吸收衬度和位相衬度成像,同样要求有强光源及
X射线显微镜的透射式X相关内容
用波带片作为聚光镜、显微波带片作为成像放大物镜、CCD 为探测器, 分辨力可达10 nm。将样品连上了制冷装置( 氦气)、转动机构,并使CCD 与计算机连接,则可做断层扫描(CT),并从屏幕上直接观察CT 图。 水窗: 水窗是指从波长2.3 nm 至4.4 nm的一个波段范围。用此范围的X 射
X射线荧光(XRF):理解特征X射线
什么是XRF? X射线荧光定义:由高能X射线或伽马射线轰击激发材料所发出次级(或荧光)X射线。这种现象广泛应用于元素分析。 XRF如何工作? 当高能光子(X射线或伽马射线)被原子吸收,内层电子被激发出来,变成“光电子”,形成空穴,原子处于激发态。外层电子向内层跃迁,发射出能量等于两级能
Nature:研究团队开发高分辨率X射线发光扩展成像技术
具有主动读出机制的平板X射线探测器在医疗诊断,安全检查和工业检查中已发现了关键的应用。当前涉及平板探测器的X射线成像技术难以对三维物体成像,因为在高度弯曲的表面上制造大面积,柔性,基于硅的光电探测器仍然是一个挑战。 2021年2月17日,福州大学陈秋水,杨黄浩及天津大学-新加坡国立大学福州联合
概述X射线显微镜的成像与构造
X 射线显微镜的成像原理与光学显微镜基本上是一样的,遵从几何光学原理,其关键部件是成像和放大作用的光学元件,在光学显微镜中为透镜。由于X 射线的波长很短,在玻璃和一般物质界面上的折射率均接近1,故其成像放大元件不能用玻璃透镜,一般用波带片。 此外,它们同样利用吸收衬度和位相衬度成像,同样要求有
X-射线显微镜的功能结构特点
X 射线显微镜是X 射线成像术的一种,也是显微成像技术,即将微观的、肉眼无法分辨看出的结构、图形放大成像以便观察研究的器械。X 射线成像的衬度原理、设备的构造与主要组成部件( 如X射线源、探测器等),但主要是从宏观物体的成像( 如人体器管的医学成像、机械制品的缺陷探伤、机场车站的安全检查等) 出发的
为什么X射线不能制出显微镜
有X射线显微镜的,X射线显微镜在生物样品的研究中,应用X射线进行样品观察的有三类:(1)用软X射线的接触式显微射线摄影(contact micro-radiography),(2)用两个磁透镜系统的投影式显微射线摄影(projection mic-ro-radiography),(3)用细的X射线流
简介γ射线料位计的放射源及其源容器
放射源及其源容器 放射源一般选用钴-60(Co)或铯-137(Cs),钴-60半衰期5.3年,铯-137半衰期30.2年。放射源外形很小,一般用的放射源经过氩弧焊多层密封后,尺寸大小为Φ10×10mm左右,或Φ8×10mm、Φ10×12mm。但为了对射线进行防护,使其通过一个狭小扇区穿过设备,
软X射线源上X射线能谱与X射线能量的测量
本文介绍了国内首次利用针孔透射光栅谱仪对金属等离子体Z箍缩X射线源能谱的测量结果及数据处理方法。同时用量热计对该源的单脉冲X射线能量进行了测量并讨论了其结果。
X射线管中X射线的产生原理
实验室中X射线由X射线管产生,X射线管是具有阴极和阳极的真空管,阴极用钨丝制成,通电后可发射热电子,阳极(就称靶极)用高熔点金属制成(一般用钨,用于晶体结构分析的X射线管还可用铁、铜、镍等材料).用几万伏至几十万伏的高压加速电子,电子束轰击靶极,X射线从靶极发出.
X射线诊断
X射线应用于医学诊断[6],主要依据X射线的穿透作用、差别吸收、感光作用和荧光作用。由于X射线穿过人体时,受到不同程度的吸收,如骨骼吸收的X射线量比肌肉吸收的量要多,那么通过人体后的X射线量就不一样,这样便携带了人体各部密度分布的信息,在荧光屏上或摄影胶片上引起的荧光作用或感光作用的强弱就有较大
X射线散射
美国物理学家康普顿(Arthur Holy Compton,1892~1962)在大学生时期就跟随其兄卡尔·康普顿开始X射线的研究。后来他到了卡文迪什实验室,主要从事g射线的实验研究。他用精湛的实验技术精确测定了γ射线的波长,并确定γ射线在散射后波长会变得更长。但他没能从理论上解释这个实验事实。他到
X射线治疗
X射线应用于治疗[7],主要依据其生物效应,应用不同能量的X射线对人体病灶部分的细胞组织进行照射时,即可使被照射的细胞组织受到破坏或抑制,从而达到对某些疾病,特别是肿瘤的治疗目的。