上海市合成生物学创新战略联盟成立

科学网12月3日上海讯(记者黄辛)药价太贵,滥用抗生素引发耐药危机,癌症、老年痴呆症缺少有效药物……合成生物学的发展,有望为这些问题的解决提供新途径。今天,由上海交通大学、中国科学院上海生科院植物生理生态研究所共同倡议、上海地区合成生物学实力研究单位共同发起的“上海合成生物学创新战略联盟”在上海交通大学正式成立,当天同时举办了“代谢科学与合成生物学高峰论坛”,专家学者共同探讨代谢科学和合成生物学今后的发展方向与挑战,以促进生物技术创新,助力上海科技创新中心建设。 从上世纪20年代发现青霉素至今,青霉素等抗生素已经挽救了无数病人的生命。然而随着有耐药性的微生物数量不断增加,抗生素对这些“超级细菌”束手无策,给人们的生命带来威胁。“随着代谢科学的深入发展,我们可以利用合成生物学手段充分研究微生物和植物天然合成药物的机制,并在此基础上进行人工改造和设计,定向合成重要的药物分子。”上海交通大学生命科学技术学院冯雁教授介绍说,“合......阅读全文

什么是合成代谢?

由于生物合成导致分子更大、结构更复杂的物质产生,这个过程需要消耗自由能,能量通常由腺苷三磷酸(ATP)直接提供。合成代谢和分解代谢是代谢过程的两个方面,二者同时进行。分解代谢生成的ATP可供合成代谢使用,合成代谢的构件分子也常来自分解代谢的中间产物。和分解代谢相反,合成代谢是从少数种类的构件出发,合

关于半合成青霉素的介绍

  1、耐酸青霉素  苯氧青霉素包括青霉素V和苯氧乙基青霉素。抗菌谱与青霉素相同,抗菌活性不及青霉素,耐酸、口服吸收好,但不耐酶,不宜用于严重感染。  2、耐酶青霉素  化学结构特点是通过酰基侧链(R1)的空间位障作用保护了β-内酰胺环,使其不易被酶水解,主要用于耐青霉素的金葡菌感染。  异恶唑类青

我国科学家提出“定量合成生物学”新范式

生物学理性设计之门 近日,中国科学院深圳先进技术研究院研究员刘陈立与中国科学院院士、中国科学院分子植物科学卓越创新中心赵国屏在《自然综述:生物工程》上发表评述文章,提出了开拓“定量合成生物学”这一新范式,将解决合成生物学“理性设计”的瓶颈问题。该文章通过总结三种合成生物学的设计范式,强调建立可定量预

第322次香山科学会议研讨“合成生物学”

日前,香山科学会议第322次学术讨论会在北京召开,会议主题是“合成生物学”。中国科学院张春霆院士和华泰立教授分别以“学术背景、研究内容、进展情况与前景展望”和“Overview and Perspectives”为题作了主题评述报告,全面介绍了国内外合成生物学研究进展。 “合成生物学”是国际上刚刚出

GCMS+多组学软件包高效开展合成生物学代谢途径分析

 合成生物学领域是备受关注的新兴领域。通过设计和构建新的生物系统,或者改造现有的生物系统,合成生物技术能够实现生物体的功能改造和新功能的创造。合成生物学在医药领域具有巨大的应用潜力。通过合成基因组和基因编辑技术,设计特定的药物合成途径,并改造微生物,使其能够高效地生产药物及中间体。这对于药物开发和生

细菌合成代谢的产物

①热原质;②毒素和侵袭性酶;③色素;④抗生素;⑤细菌素;⑥维生素。

腺嘌呤的合成代谢

腺嘌呤合成代谢包括从头合成途径和补救合成途径。从头合成途径主要在肝脏,以磷酸核糖、天冬氨酸、甘氨酸、谷氨酰胺、一碳单位为原料。嘌呤核苷酸是在磷酸核糖分子基础上逐步合成的,不是首先单独合成嘌呤碱然后再与磷酸核糖结合的。嘌呤核苷酸的补救合成主要是体内某些组织器官如脑、骨髓等缺乏从头合成嘌呤核苷酸的酶系,

丝氨酸的合成代谢

L-丝氨酸合成代谢,此指大肠杆菌。 起始物葡萄糖经糖酵解(EMP)途径中的3-磷酸甘油酸(3-Phosphoglycerate,3-PG)进入L-丝氨酸分支途径;在L-丝氨酸分支途径中,3-PG经磷酸甘油酸脱氢酶(SerA)催化合成3-磷酸-羟基丙酮酸(3-phosphonooxypyruvate,

关于青霉素酶的生物学介绍

  在各种微生物中分布广泛,特别在细菌中更为广泛。由蜡状芽孢杆菌Bacillus cereus 5/B与B. cereus 569分别得到分子量为35200与31500的青霉素酶结晶,从巨大芽孢杆菌B. megaterium 提取出α,β,γ青霉素酶结晶,随后从不同细菌又分离出多种青霉素酶。青霉素酶

《合成生物学》教材出版

近日,中山大学生命科学学院教授刘建忠主编的《合成生物学》教材由科学出版社正式出版。中国科学院院士、上海交通大学教授邓子新为该教材作序。他认为,《合成生物学》教材是一本值得推荐的教材。教材的出版将为我国合成生物学的人才培养做出重要贡献。合成生物学是生物学、工程学、物理学、化学、数学和计算机科学等学科相

半合成青霉素的制备方法介绍

  以6APA为中间体与多种化学合成有机酸进行酰化反应,可制得各种类型的半合成青霉素。  6APA是利用微生物产生的青霉素酰化酶裂解青霉素G或V而得到。酶反应一般在40~50℃、pH8~10的条件下进行;酶固相化技术已应用于6APA生产,简化了裂解工艺过程。6APA也可从青霉素G用化学法来裂解制得,

青霉素形态代谢工程研究取得进展

  中科院合肥物质科学研究院技术生物与农业工程研究所郑之明研究员及其科研团队承担的国家863课题围绕“形态基因-代谢活性-产率”的研究思路,将RNA干扰技术与形态代谢工程相结合,在产黄青霉形态代谢工程研究方面取得重要进展。   产黄青霉( Penicillium chrysogenum)是工业

核苷酸的合成代谢

嘌呤核苷酸主要由一些简单的化合物合成而来,这些前身物有天门冬氨酸、甘氨酸、谷氨酰胺、CO2及一碳单位(甲酰基及次甲基,由四氢叶酸携带)等。它们通过11步酶促反应先合成次黄嘌呤核苷酸(肌苷酸)。随后,肌苷酸又在不同部位氨基化而转变生成腺苷酸及鸟苷酸。合成途径的第一步是5-磷酸核糖在酶催化下,活化生成5

糖的合成代谢是什么?

  糖的合成代谢是指将小分子物质(如葡萄糖、氨基酸、乳酸等)转化为葡萄糖或其它糖类物质的过程。在细胞内,糖的合成代谢主要通过糖异生和糖原合成两个途径进行。  糖异生是指在缺乏葡萄糖的情况下,细胞通过代谢非糖类物质(如乳酸、甘油、丙酮酸等)来合成葡萄糖的过程。这个过程主要发生在肝脏和肾脏中,是维持血糖

细菌的分解及合成代谢

1.糖类的分解:细菌分泌胞外酶,将菌体外的多糖分解成单糖(葡萄糖)后再吸收。各种细菌将多糖分解为单糖,进而转化为丙酮酸,这一过程是一致的。丙酮酸的利用,需氧菌和厌氧菌则不相同。需氧菌将丙酮酸经三羧酸循环彻底分解成CO2和水。厌氧菌则发酵丙酮酸,产生各种酸类(如甲酸、乙酸、丙酸、丁酸、乳酸、琥珀酸等)

牛磺酸的合成与代谢

动物机体除直接从膳食中摄入牛磺酸外,还可以在肝脏中进行生物合成。蛋氨酸和半胱氨酸代谢的中间产物半胱亚磺酸经半胱亚磺酸脱羧酶(CSAD)脱羧成亚牛磺酸,再经氧化生成牛磺酸。而CSAD被认为是哺乳动物牛磺酸生物合成的限速酶,且与其他哺乳动物相比,人类CSAD活性较低,可能是因为人体内牛磺酸合成能力也较低

类固醇的合成与代谢

合成代谢类固醇类似于合成雄性性激素。它们是一类在结构及活性上与人体雄性激素睾酮相似的化学合成衍生物。合成代谢的作用可以提高骨骼肌的增长,而雄性性激素的作用可以使男性性特征更加明显。所有的合成雄性激素类固醇都有与睾酮相似的化学结构。这类药物除具有增加肌肉块头和力量,并在主动或被动减体重时保持肌肉体积的

关于嘌呤合成代谢途径介绍

腺嘌呤合成代谢包括从头合成途径和补救合成途径。从头合成途径主要在肝脏,以磷酸核糖、天冬氨酸、甘氨酸、谷氨酰胺、一碳单位为原料。嘌呤核苷酸是在磷酸核糖分子基础上逐步合成的,不是首先单独合成嘌呤碱然后再与磷酸核糖结合的。嘌呤核苷酸的补救合成主要是体内某些组织器官如脑、骨髓等缺乏从头合成嘌呤核苷酸的酶系,

甘油三脂的合成代谢

  人体可利用甘油、糖、脂肪酸和甘油一酯为原料,经过磷脂酸途径和甘油一酯途径合成甘油三酯。  1. 甘油一酯途径  以甘油一酯为起始物,与脂酰CoA共同在脂酰转移酶作用下酯化生成甘油三酯。  2. 磷脂酸途径  磷脂酸即3磷酸-1,2-甘油二酯,是合成含甘油脂类的共同前体。糖酵解的中间产物类磷酸二

-合成生物学的现实挑战

合成生物学标志性人物克雷格·文特尔 图片来源:百度图片  人们似乎正走在成为“造物主”的康庄大道上。   如今的合成生物学正成为各国争抢的科技高地。去年11月,英国政府宣布,将向相关研究机构提供2000万英镑资金,发展合成生物学技术,鼓励合成生物学技术商业化。今年2月,科学家开发出一种新

上海市合成生物学创新战略联盟成立

   科学网12月3日上海讯(记者黄辛)药价太贵,滥用抗生素引发耐药危机,癌症、老年痴呆症缺少有效药物……合成生物学的发展,有望为这些问题的解决提供新途径。今天,由上海交通大学、中国科学院上海生科院植物生理生态研究所共同倡议、上海地区合成生物学实力研究单位共同发起的“上海合成生物学创新战略联盟”在上

细菌的合成代谢产物及意义

  细菌的合成代谢产物及意义是临床检验技师考试辅导的部分内容,以下是医学教育网对这块内容的整理,希望对考生有所帮助:  (1)热原质:大多数为革兰阴性菌合成的菌体脂多糖。注入人体或动物体内能引起发热反应,故称热原质。  注:热原质耐高温,121℃20min不被破坏,蒸馏法去除热原质较好。  (2)毒

使用合成代谢类固醇是否上瘾?

使用合成代谢类固醇是否上瘾?据研究表明,还未能确定使用类固醇是否上瘾,但有研究表明大部分使用者根本不顾个有的健康问题会继续使用类固醇。同时,他们花费了大量的时间和金钱在使用类固醇上,一旦停止使用,他们就会反应出浑身无力、心事不宁、没有胃口、失觉、渴望使用更多的类固醇等症状。但停用后最危险的症状就是意

刀豆氨酸的合成代谢途径

  1982年Rosenthal[64]利用同位素标记法发现在Jack Bean,Canavalia ensiformis(L.)植物中L-刀豆氨酸(L-canavanine)的合成是由L-副刀豆氨酸(L-canaline)进过中间物尿素型高丝氨酸(O-ureido-L-homoserine)形成的

刀豆氨酸的合成代谢途径

1982年Rosenthal[64]利用同位素标记法发现在Jack Bean,Canavalia ensiformis(L.)植物中L-刀豆氨酸(L-canavanine)的合成是由L-副刀豆氨酸(L-canaline)进过中间物尿素型高丝氨酸(O-ureido-L-homoserine)形成的。这

嘧啶核苷酸的合成代谢

⒈嘧啶核苷酸的从头合成肝是体内从头合成嘧啶核苷酸的主要器官。嘧啶核苷酸从头合成的原料是天冬氨酸、谷氨酰胺、CO2等。反应过程中的关键酶在不同生物体内有所不同,在细菌中,天冬氨酸氨基甲酰转移酶是嘧啶核苷酸从头合成的主要调节酶;而在哺乳动物细胞中,嘧啶核苷酸合成的调节酶主要是氨基甲酰磷酸合成酶Ⅱ。主要合

补体如何合成与代谢生化检验

补体如何合成与代谢:1.补体编码基因:补体成分十分复杂,各编码基因分散在不同的染色体上,补体成分的许多蛋白质分子具有同分异构现象,显示其遗传多态性。几乎所有补体蛋白均为单位点常染色体等显性遗传。编码人C4、C2、B因子的基因在第6对染色体短臂上,与MHC的基因相邻,命名为Ⅲ类组织相容性基因;与C3、

关于脂肪细胞的合成代谢介绍

  脂肪细胞在体内的主要生理功能是:以甘油三酯的形式存。  脂肪细胞的分解代谢是储存在细胞中的脂肪被脂肪酶逐步水解成游离脂肪酸以及甘油释放人血,并被其他组织所氧化利用的过程。当机体需要时,存储的脂肪首先在脂肪酶的催化下分解为甘油和脂肪酸。甘油主要在肝脏被利用,经过生化反应分解供能或转变为糖。脂肪酸的

使用合成代谢类固醇是否上瘾?

据研究表明,还未能确定使用类固醇是否上瘾,但有研究表明大部分使用者根本不顾个有的健康问题会继续使用类固醇。同时,他们花费了大量的时间和金钱在使用类固醇上,一旦停止使用,他们就会反应出浑身无力、心事不宁、没有胃口、失觉、渴望使用更多的类固醇等症状。但停用后最危险的症状就是意志消沉并且有很强的自杀倾向,

嘧啶核苷酸的合成代谢

⒈嘧啶核苷酸的从头合成肝是体内从头合成嘧啶核苷酸的主要器官。嘧啶核苷酸从头合成的原料是天冬氨酸、谷氨酰胺、CO2等。反应过程中的关键酶在不同生物体内有所不同,在细菌中,天冬氨酸氨基甲酰转移酶是嘧啶核苷酸从头合成的主要调节酶;而在哺乳动物细胞中,嘧啶核苷酸合成的调节酶主要是氨基甲酰磷酸合成酶Ⅱ。主要合