长春光机所在纳米光学吸收结构研究中取得进展

近日,中国科学院长春光学精密机械与物理研究所应用光学国家重点实验室的吴一辉课题组为了解决纳米吸收结构对于入射角度的影响,提出了一种新型的全向偏振无关吸收结构。相关研究成果发表在Optics Express(DOI:10.1364/OE.23.00A413)上。 由于超常吸收纳米结构在光电探测器和光伏电池等领域的潜在应用引起强烈关注。目前,纳米吸收结构主要集中于超材料结构,但是超材料实现完美阻抗匹配对于目前的纳米加工技术提出了严峻挑战。为了克服吸收结构对于结构参数敏感的缺点,在前期研究工作中曾经提出一种基于导摸共振原理的新型纳米结构。尽管能够取得99.16%的吸收率,但是导摸共振的存在使得该种结构对于入射角度比较敏感。近日,该课题组在上述工作的基础上提出了一种偏振无关全向吸收的新型纳米结构。该种结构主要是在金属基底上的亚波长金属光栅内填充高折射率的介质来提高有效折射率。通过理论分析可知,该种超常吸收源于表面等离子激元耦合腔......阅读全文

纳米海绵-能吸收人体血液中毒素

加州大学的工程师发明了能将包括金色葡萄球菌、大肠杆菌、蛇毒及蜂毒等各种危险毒素安全送出体内的“纳米海绵”   据国外媒体报道,科学家将纳米聚合物覆盖在蛋白质上,以模拟血红细胞膜,并用之吸收侵入体内的多种毒素,结果发现,这种“纳米海绵”不仅能吸收细菌毒素,同时亦能吸收蛇毒、蜂蜇等会导致人体

纳米材料肿瘤吸收动力学分析

概述:光声成像系统(Endra Nexus 128)具有非侵入性探测的特点,同时也因为它是真正的3-D成像,因此非常适合于对实验动物的连续观察。在金纳米棒这种纳米探针被注入实验动物体内后,可以间断性地来扫描实验动物,从而得到探针在肿瘤内被摄入、吸收、清除的动态信息。实验目的:研究金纳米棒在小鼠移

植物吸收纳米塑料带来巨大生物污染

  近日,山东大学教授袁宪正团队在美国《国家科学院院刊》发表研究成果,揭示了植物叶片吸收聚对苯二甲酸乙二醇酯纳米塑料后带来的巨大生物污染。该研究为评估大气塑料污染对生态系统功能、农业生产力和人类健康构成的风险提供了新的科学依据。  微(纳米)塑料广泛存在于陆地生态系统中,农业土壤中的积累浓度在严重污

新型纳米纤维气凝胶可有效吸收交通噪声

  交通噪声一直被认为是最烦人的污染之一,对人类的生理和心理健康造成严重危害。近日,东华大学纺织科技创新中心印霞、斯阳、丁彬联合团队开发了一种分层结构的弹性陶瓷电纺纳米纤维气凝胶,可有效吸收交通噪声等低频噪声,助力解决噪声污染问题。近日,相关成果发表在美国化学会的《纳米快报》上。  为解决交通噪声等

新型纳米纤维气凝胶可有效吸收交通噪声

原文地址:http://news.sciencenet.cn/htmlnews/2022/3/474808.shtm 交通噪声一直被认为是最烦人的污染之一,对人类的生理和心理健康造成严重危害。近日,东华大学纺织科技创新中心印霞、斯阳、丁彬联合团队开发了一种分层结构的弹性陶瓷电纺纳米纤维气凝胶,可

农药用纳米胶囊包裹后,植物吸收变慢了

原文地址:http://news.sciencenet.cn/htmlnews/2022/4/478029.shtm 农药纳米封装及其叶面施用是提高当前农药施用效率的有效途径。近日,加拿大麦吉尔大学的一个科研团队对番茄叶面施用二氧化硅纳米胶囊有机农药后的吸收和转运问题进行了研究,发现植物对纳米胶

吸收能量,是电子吸收能量而跃迁,还是原子吸收能量

都有可能,一般来说都是外层电子跃迁,这样的跃迁一般涉及红外、可见光、紫外线这种能量较低的光子。但内层电子也可以跃迁,这涉及x射线这种能量较高的光子。原子核也能跃迁,这涉及到伽马射线这种能量很高的光子,一般只有核反应里才能遇到。

消化吸收定性试验脂肪吸收

脂肪在小肠内,消化分解为脂肪酸、甘油三酯、胆固醇等很快与胆汁中的胆盐形成 混合微胶粒。由于胆盐有亲水性,它携带脂肪分解产物通过覆盖在小肠绒毛表面的非流 动水层到达微绒毛上。在这里,甘油三酯、脂肪酸和胆固醇等又逐渐地从混合微胶粒中 释出,它们透过微绒毛的脂蛋白膜而进入肠粘膜细胞,胆盐被遗于肠腔。粪便脂

原子吸收的吸收池如何清洗

在原子吸收分光光度计上使用的光源一般有: 空心阴极灯(hollow cathode lamp,HCL)、无极放电灯、蒸气放电灯和激光光 源灯。其中应用最广泛的是空心阴极灯和无极放电灯。 光源的作用是发射待测元素的特征光谱,供测量用。为了保证峰值吸收的测量, 要求光源必须能发射出比吸收线宽度更窄的锐线

紫外吸收中末端吸收的定义

末端吸收是指在紫外光谱中,吸收曲线的最短波长处只呈现强吸收而不是峰形的部分。在日常的紫外检测中,靠近200nm处的吸收光谱线会出现向上飘移的现象,这实际上是由于一些紫外吸收峰出现在200nm以下,在检测范围内(190-200nm)只能看到这些吸收峰靠近长波方向的末端部分。这一现象产生的原因在于,紫外

单颗粒ICPMS应用:西红柿吸收金纳米颗粒

伴随着工程纳米材料在各个不同产品和过程的使用不断增加,人们开始对纳米颗粒的释放对环境和人类健康造成的影响产生了担心。要研究纳米颗粒对环境的影响,就必须探索纳米颗粒如何通过在水和土壤中的迁徙而被植物吸收的。如果纳米颗粒最终为食品作物所吸收,那么人类就直接面临ENPs释放造成的影响。 这项研究工作的目标

280-纳米光吸收法测定蛋白质浓度实验

280纳米(A280)光吸收法             实验方法原理 由于蛋白质分子中常酪氨酸、色氨酸、苯丙氨酸等苯环结构,在紫外 280 nm 波长处有最大吸收峰,其吸收值与蛋白质

280-纳米光吸收法测定蛋白质浓度实验

实验方法原理由于蛋白质分子中常酪氨酸、色氨酸、苯丙氨酸等苯环结构,在紫外 280 nm 波长处有最大吸收峰,其吸收值与蛋白质浓度成正比,故可用 280 nm 波长吸收值大小来测定蛋白质含量。实验材料待测蛋白质样品试剂、试剂盒实验用缓冲液(空白对照)仪器、耗材分光光度计(配备紫外档)石英比色杯用于溶液

280-纳米光吸收法测定蛋白质浓度实验

实验方法原理 由于蛋白质分子中常酪氨酸、色氨酸、苯丙氨酸等苯环结构,在紫外 280 nm 波长处有最大吸收峰,其吸收值与蛋白质浓度成正比,故可用 280 nm 波长吸收值大小来测定蛋白质含量。实验材料 待测蛋白质样品试剂、试剂盒 实验用缓冲液(空白对照)仪器、耗材 分光光度计(配备紫外档)石英比色杯

单颗粒ICPMS应用-|-西红柿吸收金纳米颗粒

  伴随着工程纳米材料在各个不同产品和过程的使用不断增加,人们开始对纳米颗粒的释放对环境和人类健康造成的影响产生了担心。要研究纳米颗粒对环境的影响,就必须探索纳米颗粒如何通过在水和土壤中的迁徙而被植物吸收的。如果纳米颗粒最终为食品作物所吸收,那么人类就直接面临ENPs释放造成的影响。   这项研究

请问原子吸收的吸收池如何清洗

在原子吸收分光光度计上使用的光源一般有: 空心阴极灯(hollow cathode lamp,HCL)、无极放电灯、蒸气放电灯和激光光 源灯。其中应用最广泛的是空心阴极灯和无极放电灯。      光源的作用是发射待测元素的特征光谱,供测量用。为了保证峰值吸收的测量, 要求光源必须能发射出比吸收线宽度

口腔吸收药物会得到更好的吸收

  法国国家农艺研究所日前发布公告说,动物实验显示,双酚A能够通过口腔途径吸收,直接进入体内血液循环系统。这一发现有望帮助人们研发出通过口腔途径吸收的药物,从而使药物得到更好的吸收。   法国国家农艺研究所等机构的研究人员在狗身上实验发现,双酚A能够通过布满血管的舌下粘膜直接进入血液循环系统,而且

红外吸收光谱主要的吸收峰

紫外无吸收,表明该化合物中没有存在共轭体系。在3000左右的峰表明该化合物中可能有:炔h、烯氢、醛基h或烷基h;1650左右的吸收峰,则表明体系中存在羰基c=o,可能是酸、醛酮、酰胺、酯或酸酐之类的

红外吸收光谱主要的吸收峰

紫外无吸收,表明该化合物中没有存在共轭体系。在3000左右的峰表明该化合物中可能有:炔h、烯氢、醛基h或烷基h;1650左右的吸收峰,则表明体系中存在羰基c=o,可能是酸、醛酮、酰胺、酯或酸酐之类的

吸收体积法,吸收滴定法,吸收重量法,燃烧法原理

燃烧法基本原理是可燃性气体燃烧时,其体积的缩减,消耗氧的体积或生成CO的体积有一定的比例关系,根据其体积缩减,耗氧的体积或生成CO的体积,可以计算可燃性气体的量。吸收体积法,吸收滴定法,吸收重量法原理:吸收体积法基本原理;利用气体组分的化学性质,使气体混合物和特定试剂接触,则混合气体中的被测组分和试

强可见近红外吸收峰的超碳纳米点制成

  近日,中国科学院长春光学精密机械与物理研究所研究员曲松楠课题组首次研制出在可见-近红外区具有强吸收和高光热转换效率的超碳纳米点,该工作突破了碳基纳米材料在可见到近红外波段的吸收系数低的限制,并实现近红外区高达53%的光热转换效率,为该类材料国际上报道的最高值,在开发基于碳纳米点的光热治疗试剂方面

美开发出“纳米海绵疫苗”-能大量吸收成孔毒素

  据物理学家组织网近日报道,美国加州大学圣地亚哥分校纳米工程师开发出一种“纳米海绵疫苗”,经小鼠实验证明,其能大量吸收耐甲氧西林金黄色葡萄球菌(MRSA)产生的成孔毒素——无论在血管还是在皮肤,因此能预防MRSA放出的alpha-溶血素造成的影响恶化,可作为一种安全高效的抗毒素疫苗。相关论文发表在

以色列:研发特殊纳米涂料-可吸收98%%的可见光

  在政府推动下,以色列纳米技术研究进展迅速,成果显著。   据统计,目前,以色列从事纳米技术研发的公司已由3年前的45家,发展为现在的75家;纳米研究小组从210个,增加到325个。全国主要大学均有纳米研究项目,其中,以色列技术学院、特拉维夫大学、魏兹曼研究院等纳米研究能力显著增强,显示了在该领

长春光机所在纳米光学吸收结构研究中取得进展

   近日,中国科学院长春光学精密机械与物理研究所应用光学国家重点实验室的吴一辉课题组为了解决纳米吸收结构对于入射角度的影响,提出了一种新型的全向偏振无关吸收结构。相关研究成果发表在Optics Express(DOI:10.1364/OE.23.00A413)上。  由于超常吸收纳米结构在光电探测

纳米硅羟基磷灰石分离富集2火焰原子吸收法

纳米硅羟基磷灰石分离富集2火焰原子吸收法 测定水样中痕量铅 任红英, 周方钦3 , 李改云, 戴 斐 (湘潭大学化学学院,环境友好化学与应用省部共建教育部重点实验室,湖南湘潭411105) 摘 要:提出了纳米硅羟基磷灰石(Si2HAP) 分离富集,火焰原子吸收光谱法( FA

美纳米胶囊或可吸收放疗有害物质

  美国科研人员近日发现,一种人工合成的纳米胶囊可吸收放射性治疗产生的有害物质。这一研究有望帮助接受放射治疗的癌症患者免受多余放射物的危害。   α射线被普遍用于对癌症患者进行放射治疗。α射线中的α粒子由某些放射性同位素衰变后放射出来,其质量和动量均很大,可杀伤患者体内的肿瘤细胞。但这种疗法的问题

怎么根据紫外吸收峰计算金纳米粒子粒径

纳米粒子的紫外吸收峰的位置与纳米粒子的粒径有关,不同的粒径大小测得的紫外吸收峰的位置有区别.首先你需要查阅文献,找到你研究的纳米粒子的相关紫外可见吸收光谱的数据和图谱,作为参考.其次,你需要确认你的纳米粒子样品是否具有相对均一的粒径,如果各种大小的纳米粒子混合在一起,这样是不好测量的.再次,你需要配

原子吸收中镍的吸收线有哪些

镍的吸收线有很多种,这个资料上到处都是可以查到至于解释每条线只要你知道了,为什么会有不同的吸收线就完全没有必要了当镍原子外层电子受到激发时,吸收能量就可以向能量高的能级跃迁由于其核外电子能级轨道是固定的,所以从基态到第一激发态所吸收的能量也是固定的,能量固定就使吸收谱线是固定的,但其核外还有第二激发

原子吸收中镍的吸收线有哪些

镍的吸收线有很多种,这个资料上到处都是可以查到至于解释每条线只要你知道了,为什么会有不同的吸收线就完全没有必要了当镍原子外层电子受到激发时,吸收能量就可以向能量高的能级跃迁由于其核外电子能级轨道是固定的,所以从基态到第一激发态所吸收的能量也是固定的,能量固定就使吸收谱线是固定的,但其核外还有第二激发

关于溶液吸收法的吸收管的介绍

  1、气泡吸收管  这种吸收管可装 5 一 10mL 吸收液,采样流量为 0.5 一 2.0L/min ,适用于采集气态和蒸气态物质。对于气溶胶态物质,因不能像气态分子那样快速扩散到气液界面上,故吸收效率差。  2、冲击式吸收管  这种吸收管有小型(装 5 一 10mL 吸收液,采样流量为 3.0