Antpedia LOGO WIKI资讯

中美学者:解密胚胎发育的软件

最近,在12月3日的开放获取期刊《eLife》发表的一项研究中,来自美国国家生物医学成像和生物工程研究所(NIBIB)和信息技术中心(CIT)、纪念斯隆-凯特林研究所、耶鲁大学、康涅狄格大学健康中心和浙江大学的研究人员,开发出一个新的开放源软件,可以帮助跟踪线虫整个身体的胚胎发育和神经细胞活动。浙江大学光电科学与工程学院的刘华峰(Huafeng Liu)教授和博士生过敏(Min Guo)是本文共同作者。 目前,生物学家对大脑已经有所了解,但是还有许多有待于揭示的信息。一个重要的挑战是,确定人脑中由数十亿个细胞组成的复杂神经结构。由于有许多生物学方面的挑战,研究人员首先在简单生物(如线虫)中,研究这个问题。 虽然科学家已经确定了一些重要的蛋白质,它们决定着神经元在大脑形成过程中如何定位,但是,所有这些蛋白质在活的生物体内是如何相互作用的,在很大程度上还是未知的。模式动物——尽管它们有别于人类,已经揭示了关于人类生理学的许多......阅读全文

发育生物学领域最新研究进展

  本期为大家带来的是发育生物学领域的最新研究进展,希望读者朋友们能够喜欢。  1. Eur Respir J:新研究揭示肺脏发育高清图谱  DOI: 10.1183/13993003.00746-2019  过早出生的婴儿常常患有肺部发育不良,并可能面临危及生命的后果。为了给这些婴儿提供新颖的治疗

组蛋白研究进展速览!

  本文中,小编盘点了多篇研究报告,共同解析科学家们在组蛋白研究上取得的新成就,与大家一起学习!图片来源:Daniel N. Weinberg et al,doi:10.1038/s41586-019-1534-3  【1】Nature:揭示组蛋白标记H3K36me2招募DNMT3A并影响基因间DN

植物所发现VPS28调控生长素介导的植物生长发育

  内吞体分选转运复合体(ESCRT)在真核生物中高度保守,在泛素化质膜蛋白的胞内降解过程中发挥重要作用。ESCRT复合体主要参与多泡体形成、胞质分裂和病毒出芽过程。该复合体含有多个组分,在动物中研究较多,而在植物中一些组分的功能尚不清楚。  中国科学院植物研究所程佑发研究组通过遗传筛选,获得胚胎和

microRNAs(miRNAs)简介(1)

microRNAs(miRNAs)是一种小的,类似于siRNA的分子,由高等真核生物基因组编码,miRNA通过和靶基因mRNA碱基配对引导沉默复合体(RISC)降解mRNA或阻碍其翻译。miRNAs在物种进 化中相当保守,在植物、动物和真菌中发现的miRNAs只在特定的组织和发育阶段表达,m

生物物理所揭示细胞自噬活性在生殖腺细胞凋亡中的作用

  11月3日,中科院生物物理研究所张宏课题组在Autophagy杂志在线发表题为Autophagy activity contributes to programmed cell death in Caenorhabditis elegans的论文。文中报道了细胞自噬活性在生殖腺细胞凋亡中的作

2020年世界科技发展回顾·生物技术

以色列 研究抗癌、抗衰老疑难杂症 超高分辨率显微镜看到活细胞 本报驻以色列记者 毛黎 特拉维夫大学率先证明,通过CRISPR基因编辑技术能有效地破坏动物癌细胞DNA,同时保持周围其他细胞组织完好无损;舍巴医学中心在全球首次试验性采用“逆向个性化药物”(RPM)治疗癌症患者;特拉维夫大学研

研究发现压力如何影响机体健康

  本文中,小编整理了多篇研究成果,共同解读压力如何影响机体健康,分享给大家!  图片来源:intelligentinsurer.com  【1】Nature:早期压力可有助于延长寿命  doi:10.1038/s41586-019-1814-y  一项发表在Nature杂志上的最新研究发现,年轻时

清华欧光朔JCB发表CRISPR研究成果

  近期,清华大学欧光朔研究组在《细胞生物学杂志》(Journal of Cell Biology)上在线发表题为“Somatic CRISPR–Cas9-induced mutations reveal roles of embryonically essential dynein chains

用CRISPR构建诱导性基因敲除人类干细胞系

  来自威斯康星大学的研究人员报告称,他们开发出了一种新策略来快速构建诱导性基因敲除(iKO)人类多能干细胞(hPSC)系。相关研究论文发布在7月2日的《细胞干细胞》(Cell stem cell)杂志上  威斯康星大学的张素春(Su-Chun Zhang)教授及助理研究员Yuejun Chen是这

科学家在细胞层面深度跟踪人类发育

这种新技术将能让生物学家提出有关个体之间、器官之间以及随着其年龄增长的谱系树变化的问题。20世纪80年代初,约翰·萨尔斯顿连续18个月将时间花费在观察蠕虫生长上。他用光学显微镜观察一只秀丽隐杆线虫的胚胎,并且每隔5分钟勾勒观察图,例如一个受精卵分化为两个细胞,然后变为四个、八个,等等。他在英国剑桥医

从胚胎到成年人 科学家在细胞层面深度跟踪人类发育

  这种新技术将能让生物学家提出有关个体之间、器官之间以及随着其年龄增长的谱系树变化的问题。   20世纪80年代初,约翰·萨尔斯顿连续18个月将时间花费在观察蠕虫生长上。他用光学显微镜观察一只秀丽隐杆线虫的胚胎,并且每隔5分钟勾勒观察图,例如一个受精卵分化为两个细胞,然后变为四个、八个,等等。他

科学家在细胞层面深度跟踪人类发育

  这种新技术将能让生物学家提出有关个体之间、器官之间以及随着其年龄增长的谱系树变化的问题。  20世纪80年代初,约翰·萨尔斯顿连续18个月将时间花费在观察蠕虫生长上。他用光学显微镜观察一只秀丽隐杆线虫的胚胎,并且每隔5分钟勾勒观察图,例如一个受精卵分化为两个细胞,然后变为四个、八个,等等。他在英

科学家在细胞层面深度跟踪人类发育

这种新技术将能让生物学家提出有关个体之间、器官之间以及随着其年龄增长的谱系树变化的问题。 20世纪80年代初,约翰萨尔斯顿连续18个月将时间花费在观察蠕虫生长上。他用光学显微镜观察一只秀丽隐杆线虫的胚胎,并且每隔5分钟勾勒观察图,例如一个受精卵分化为两个细胞,然后变为四个、八个,等等。他在

深度长文!细胞自噬在健康和疾病中的作用

  自上世纪60年代科学家发现细胞自噬现象以来,人们获知衰老、癌症可能与我们身体的最小组成单位——细胞受损有关,但其详细机制如何,一直未有定论。这一生命之谜陷入长久僵局。2016年,日本科学家大隅良典因发现细胞自噬的分子机制获得诺贝尔生理学或医学奖,为这一领域打开新的大门。本文将从细胞自噬的发现、发

光片成像模块升级共聚焦显微镜:成像更快速光毒性更低

对生物样品进行快速可靠的原位成像以揭示与复杂的多细胞生物相关的动态过程一直都是光学成像的一大目标。传统的激光共聚焦显微镜虽然具有优异的3D荧光成像功能,提供了非常高的空间分辨率,但是在某些实验中,成像速度不够快和光漂白问题依然不容忽视。光片技术的提出就很好地解决了这些问题,同时还保有优异的空间分辨率

Nature:生男还是生女?古老病毒来决定

  近日,一项刊登在Nature杂志上的研究中,来自耶鲁大学的科学家发表了一项突破性的研究成果,他们发现人类及其他哺乳动物的性别早在150万年前就由“嵌入”哺乳动物基因组中的关键病毒的一种简单修饰所确定了。研究者Andrew Xiao指出,从根本上来说,这些病毒可以促使哺乳动物的基因组不断进化,但同

Neuron:饶毅等提出脑研究的“化学连接组”新概念

  “化学连接组是一个新概念,化学连接组学是一个新途径,应用于果蝇的相关工具是强有力的资源”。  2019年2月21日,重要国际学术期刊《神经元》发表北京大学饶毅教授实验室的论文:“化学连接组学:绘制果蝇的化学传递图谱”。 其摘要中明确提出“化学连接组是一个新概念,化学连接组学是一个新途径,应用于果

年终盘点:2016年国内不容错过的重磅生物研究

  时间总是过得很快,2016年马上就要过去了,迎接我们的将是崭新的2017年,2016年,我国有很多优秀科研机构的科学家们都做出了意义重大、影响深远的研究成果,发表在国际顶级期刊上。本文中小编盘点了2016年我国科学家发表的一些重磅级研究,以饕读者。   --结构生物学 --  1.清华大学 施一

那些打破人们传统认知的重磅级研究成果!

  随着科学家们研究的不断深入,总会有一些意想不到的研究成果,本文中,小编就对那些打破人们传统认知的重磅级研究成果进行整理,分享给大家!  【1】Sci Adv:打破传统认知!适度的压力或会让你更加长寿!  doi:10.1126/sciadv.aav1165  一种称之为染色质结构缺陷的描述或染色

4月26日《自然》杂志精选

学习过程中对运动皮层的观测   虽然人们知道一个回路中的很多神经元在长期学习过程中其弹性会发生变化,但电生理方法的局限性意味着,通常每次只能在少数神经元中对这些变化进行研究。   这项研究采用经过基因编码的神经活性标记来在小鼠的感觉运动学习期间对大量运动—皮层神经元同时进行跟踪。所获得的图像

2012国家自然科学基金评审结果名单之清华大学(生物类)

  来自国家自然科学基金委员会的消息,国家自然科学基金委员会公布了2012年度面上项目、重点项目、重大国际(地区)合作研究项目、青年科学基金项目、地区科学基金项目、海外及港澳学者合作研究基金项目、科学仪器基础研究专款项目等方面的评审结果。有关评审结果将通知相关依托单位,其科研管理人员可登录科学基金网

【盘点】衰老与疾病的关联性研究进展

  人为什么会变老?对于人类来说,如何才能长生不老真的是一个令人着迷的问题。但是至今为止都没有一个让人满意的答案。衰老一直是生命过程中的核心环节,也是影响整个人类社会健康发展的重要问题。目前世界各国均面临着严重的人口老龄化,数据显示到2050年约三分之一的中国人口年龄将超过60岁。因此,深入了解衰老

上海生科院揭示反式剪接的发生机制

  4月1日,Genes & Development 发表了中国科学院上海生命科学研究院植物生理生态研究所徐永镇研究组题为A conserved intronic U1 snRNP-binding sequence promotes trans-splicing in Drosophila

Nature 表观遗传学进展将遗传学、环境与疾病联系了起来!

  21世纪,表观遗传学的研究得到了快速发展,同时其产生了让研究人员感兴趣和憧憬的东西,当然了,这其中也存在一些大肆宣传的成分,本文中,我们回顾了表观遗传学在过去几十年里是如何演变的,同时分析了近年来改变科学家们对生物学理解的一些研究进展;我们讨论了表观遗传学和DNA序列改变之间的相互作用,以及表观

关于2011年度教育部科学技术研究重点项目立项通知

教技司[2011]95号 各省、自治区、直辖市教育厅(教委)、新疆生产建设兵团教育局,国家民族事务委员会教科司、国务院侨办文教宣传司:   2011年度教育部科学技术研究重点项目评审工作已经结束。经专家评审并公示,共有212个项目获准立项(具体名单见附件)。为做好项目实施工作,现将有关

线粒体对机体健康到底有多重要?

  我们都知道,线粒体是机体的细胞能量工厂,近年来随着科学家们研究的深入,他们渐渐开始发现线粒体对机体健康非常重要,本文中,小编就对相关研究进行了整理,分享给大家!  【1】EMBO J:单一的线粒体蛋白缺失或会诱发全身性的炎症反应  doi:10.15252/embj.201796553  目前研

Nat Neuro | 李翔团队揭示m6dA参与恐惧消除

  恐惧引起的焦虑障碍影响着世界上数以万计的人。恐惧反应是机体基于对应激的判断而做出的一种具有自我保护性质的本能反应。然而,过度的恐惧则会导致包括焦虑症在内的一系列精神疾病,这类精神疾病具有一个共同的特征,即患者不能除去或者消散原有的恐惧记忆。创伤后应激障碍(Post-traumatic stres

自然、科学3篇文章发表miRNA新进展

miRNA是生物体内源长度约为20-23个核苷酸的非编码小RNA,通过与靶mRNA的互补配对而在转录后水平上对基因的表达进行负调控,导致mRNA的降解或翻译抑制。有关这一小分子的研究近5年来成为科学家们研究热点,在本期的《Nature》、《Science》杂志上,分别公布了其功能作用的两大研究进展。

国内外实验动物模型概览

  生命是“能够自我营养并独立生长和衰败的力量”,这是亚里士多德(Aristotle,公元前384—322)通过动物、植物的研究对生命的哲学概括。动物也成为古代先哲们探索生命奥秘的主要对象之一,盖伦(Galen,公元130—200)开创了动物解剖学和实验生理学,他将来源于动物的知识推广到对人体的认识

盘点:2015年医学与生物学取得重大进展的国家Top10

  美国  人脑研究取得新成果,医学与疾病防治取得多项重大突破,合成生物学成果纷呈。  2015年,美国科学家在人脑研究领域取得重大突破:8月,俄亥俄州立大学在实验室中培育出近乎完全成型的人类大脑,尽管它只有铅笔上橡皮擦那么大,发育程度与一个5周大胎儿的大脑相当,尚没有任何意识,但具备人脑绝大多数细