半导体所等在磁性半导体(Ga,Mn)As研究中取得进展
中国科学院半导体研究所半导体超晶格国家重点实验室赵建华团队及合作者美国佛罗里达州立大学教授熊鹏等在有机自组装分子单层对磁性半导体(Ga,Mn)As薄膜磁性调控研究方面取得新进展,相关成果发表在Advanced Materials(2015,27,8043–8050,DOI: 10.1002/adma.201503547)上,并被编辑选作期刊卷首(DOI: 10.1002/adma.201570332)。 近年来,分子界面化学与自旋电子学交叉研究受到高度关注。利用分子界面对磁性材料中电子自旋布局的调控,可以驱动载流子集合的自旋取向,或对单个电子和少数电子自旋进行相干操控。王晓蕾等研究了有机分子与(Ga,Mn)As薄膜界面对(Ga,Mn)As的居里温度、矫顽力、自旋输运以及霍尔效应等的调制作用。Mn掺杂引入的空穴导致(Ga,Mn)As中局域Mn离子之间产生了铁磁交换作用,通常采用外加电场调节载流子浓度的方法来调控(Ga,Mn)......阅读全文
我国在量子计算研究获进展-实现三量子点半导体调控
近期,中国科学技术大学郭光灿院士领导的中科院量子信息重点实验室在半导体量子计算芯片研究方面取得新进展。实验室郭国平研究组创新性地引入第三个量子点作为控制参数,在保证新型杂化量子比特相干性的前提下,极大地增强了杂化量子比特的可控性。国际应用物理学顶级期刊《应用物理评论》日前发表了该成果。 开发与
为量子计算开路-半导体纳米设备还能这么用
日本理化学研究所(理研)近日宣布,利用由广泛用于工业领域的天然硅制成的半导体纳米设备,实现了具有量子计算所必需的高精度的“量子比特”(qubit)。由于可以使用现有的半导体集成化技术安装量子比特元件,因此,这次的成果将是实现大规模量子计算机的重要一步。 本次研究中使用的样本的电子显微镜
磁性半导体的分类
磁性半导体研究热点为主要为两类半导体:稀磁半导体、铁磁半导体。
磁性半导体的定义
磁性半导体(英语:Magnetic semiconductor)是一种同时体现铁磁性(或者类似的效应)和半导体特性的半导体材料。
新磁性材料有助催生常温运行的量子计算机
原文地址:http://news.sciencenet.cn/htmlnews/2023/9/508384.shtm
稀磁性半导体的应用
稀磁性半导体是指非磁性半导体中的部分原子被过渡金属元素取代后形成的磁性半导体,因兼具有半导体和磁性的性质,即在一种材料中同时应用电子电荷和自旋两种自由度,因而引起广泛关注,尚处于研究阶段。
磁性半导体的发展历史
第一代磁性半导体关于磁性半导体的研究可以追溯到20世纪60年代。我们首先来简单回顾一下关于浓缩磁性半导体(Concentrated Magnetic Semiconductor)的研究进展。所谓浓缩磁性半导体即在每个晶胞相应的晶格位置上都含有磁性元素原子的磁性半导体,例如Eu或Cr的硫族化合物:岩盐
磁性半导体的应用特点
磁性半导体(英语:Magnetic semiconductor)是一种同时体现铁磁性(或者类似的效应)和半导体特性的半导体材料。如果在设备里使用磁性半导体,它们将提供一种新型的导电方式。传统的电子元件都是以控制电荷自由度(从而有n型和p型半导体)为基础工作,磁性半导体能控制电子的自旋自由度(于是有了
磁性半导体在三维材料中保留二维量子特性
美国宾夕法尼亚州立大学和哥伦比亚大学领导的国际团队在新一期《自然·材料》杂志上发表了一项重要研究成果,展示了磁性半导体在三维材料中保持特殊的二维量子特性。这一突破为现实世界中的光学系统和高级计算应用提供了新的可能性。 尽管二维材料如石墨烯展示了广泛的功能,并具有革命性的潜力,但维持其在二维极限
我国半导体量子计算芯片封装技术进入全新阶段
原文地址:http://news.sciencenet.cn/htmlnews/2023/8/506366.shtm
我国半导体量子计算芯片封装技术进入全新阶段
从量子计算芯片安徽省重点实验室获悉,我国科研团队成功研制出第一代商业级半导体量子芯片电路载板,该载板最大可支持6比特半导体量子芯片的封装和测试需求,使半导体量子芯片可更高效地与其他量子计算机关键核心部件交互联通,将充分发挥半导体量子芯片的强大性能。 量子计算机具有比传统计算机更高效的计算能力和
稀磁性半导体的制备方法
分子束外延法分子束外延(MBE)技术由于其在原子尺度上精 确控制外延膜厚、掺杂和界面平整度的特点,明显优 于液相外延法和气相外延生长法,更有利于生长高质 量DMS薄膜。采用低温分子束外延(LT-MBE)技术, 能够有效的抑制新相的析出,同时辅助以高能电子衍 射仪(RHEED),监控生长过程中的表面再
瑞典发现常温磁性量子新材料
瑞典查尔姆斯理工大学研究人员展示了一种常温二维磁性量子材料。此前,此类材料仅能在极低温实验室环境中展示。该材料基于铁基合金(Fe5GeTe2)和石墨烯开发,具备单原子厚度,可用作自旋极化电子的源和检测器,在超快速、低功耗传感器应用以及先进磁存储和计算方面具有广泛的应用价值。该材料可用于下一步发展
什么是量子计算
量子计算是一种基于量子物理学的计算形式。经典计算机依靠位(零或一)进行计算,而量子计算机使用利用量子力学以“叠加”形式存在的量子位(量子位):零和一的组合,每个都有一定的概率。例如,一个量子位可能有 80% 的几率为零,20% 的几率为零。或者 60% 的机会为零,40% 的机会成为 1。等等。19
稀磁性半导体的发展前景
稀磁半导体兼具半导体和磁性材料的性质,使同时利用半导体中的电子电荷与电子自旋成为可能,为开辟半导体技术新领域以及制备新型电子器件提供了条件。尽管对于DMS材料应用的研究尚处于实验探索阶段,但已展示出其广阔的应用前景。如将 DMS材料用作磁性金属与半导体的界面层,实现自旋极化的载流子向非磁性半导体中的
稀磁性半导体的研究进展
从根本上说主要是由于自旋电子之间的交换作用使得磁性半导体具有磁性。经常用于解释磁性半导体的磁性起源的交换作用模型有描述绝缘体中磁性的直接交换作用和超交换作用、载流子媒介交换作用和描述部分氧化物中掺杂磁性的束缚磁极化子模型。传统铁磁金属之间的铁磁耦合用直接交换作用机制来描述,而金属氧化物、硫化物、氟族
半导体所二维半导体磁性掺杂研究取得进展
近年来,二维范德华材料如石墨烯、二硫化钼等由于其独特的结构、物理特性和光电性能而被广泛研究。在二维材料的研究领域中,磁性二维材料具有更丰富的物理图像,并在未来的自旋电子学中有重要的潜在应用,越来越受到人们的关注。掺杂是实现二维半导体能带工程的重要手段,如果在二维半导体材料中掺杂磁性原子,则这些材
“猫量子比特”实现容错量子计算新突破
美国亚马逊云科技量子计算中心团队在25日《自然》杂志的一篇论文中,演示了容错量子计算的新突破:一种对硬件需求更低的量子纠错系统。这一系统使用了“猫量子比特”(cat qubits),其创新设计能抵抗可能会干扰量子系统输出的特定类型的噪音和错误,同时实现量子比特需要的元器件总数比其他设计更少。量子计算
“脆弱”的量子比特,如何成为量子计算主心骨
近来,有关量子计算的新闻不断刷屏。量子计算机的突破,为我们描绘着更快、更强的未来计算场景。然而,对于大多数人来讲,量子计算机依然是“不明觉厉”的存在。我们可能会发现,表述量子计算机能力水平的一个重要参数是它的量子比特数。无论是我国66比特的可编程超导量子计算原型机“祖冲之二号”,还是近日IBM公司宣
双极磁性半导体的概念和特征
双极磁性半导体(英文Bipolar Magnetic Semiconductors,缩写BMS) 是一类特殊的磁性半导体材料,它具有独特的电子能带结构:价带顶和导带底是100% 自旋极化的,且它们的自旋极化方向是相反的。 双极磁性半导体具有三个特征能隙:价带内的自旋翻转能隙Δ1,半导体带隙Δ2和导带
全新磁性材料展现量子自旋液态
据物理学家组织网22日报道,一个国际科研团队在寻找新的物质形态方面取得重大突破:他们证明,与钙钛矿相关的金属氧化物TbInO3展现出量子自旋液态,这是科学家很长时间以来一直在追寻的一种物质形态,有望应用于量子计算等领域。 40多年前,诺贝尔物理学奖得主菲利普·安德森从理论上提出了量子自旋液态。
半导体所等关于磁性半导体(Ga,Mn)As的研究获得进展
最近,《纳米快报》杂志报道了中科院半导体研究所超晶格室赵建华研究员和博士生陈林将磁性半导体(Ga,Mn)As居里温度提高到200K的研究成果,此项工作是与杨富华研究组以及美国佛罗里达州立大学Stephan von Molnár教授和熊鹏教授研究组合作完成的。 (Ga,Mn)A
半导体所等在磁性半导体(Ga,Mn)As研究中取得进展
中国科学院半导体研究所半导体超晶格国家重点实验室赵建华团队及合作者美国佛罗里达州立大学教授熊鹏等在有机自组装分子单层对磁性半导体(Ga,Mn)As薄膜磁性调控研究方面取得新进展,相关成果发表在Advanced Materials(2015,27,8043–8050,DOI: 10.1002/ad
新量子计算机解锁更多计算能力
奥地利因斯布鲁克大学实验物理系托马斯·蒙兹团队成功开发了一种量子计算机,可使用所谓的“量子数字”执行任意计算,从而以更少的量子粒子释放更多的计算能力。该项研究成果发表在最新一期《自然·物理学》杂志上。 计算机使用0和1,也就是二进制信息进行运算。在此基础上,今天的量子计算机在设计时也考虑到了二
全球量子科技顶尖专家共议量子计算科技创新
以量子信息与量子计算为代表的量子科技发展具有重大科学意义和战略价值,将引领新一轮科技革命和产业变革方向。近年来,在物理学、信息科学与工程学等多学科融合促进之下,量子科技的基础重大科研成果不断涌现,在量子测量、器件和设备等体现出了强大的量子优越性,展现出了解决新材料设计、生物药物研发、通信金融安全等复
如何对抗量子计算攻击?“后量子密码”保安全
原文地址:http://news.sciencenet.cn/htmlnews/2023/7/504833.shtm“现代公钥密码学自20世纪70年代诞生起,业已成为当今和未来各种网络形态的安全信任根基。而随着量子计算的发展,未来可能会彻底颠覆现代公钥密码学。”近日,在第三届雁栖湖国际后量子密码标准
半导体参杂浓度计算
硅的原子密度为5*10^22cm-3,掺入1%的As后,若杂质全部电离,则室温下载流子浓度为:多数载流子(电子)n=5*10^22cm-3*1%=5*10^20cm-3少数载流子(空穴)p=ni^2/n=0.45cm-3
法国启动全国量子计算平台
法国高等教育、研究与创新部4日发布新闻公报说,在法国量子技术国家投资规划框架下,政府当日宣布启动全国量子计算平台,旨在更好推动量子技术的应用和发展。 根据公报,该平台拥有初始投资7000万欧元,目标投资总额1.7亿欧元。平台将以法国替代能源与原子能委员会运行的超大计算中心(TGCC)为载体
量子计算机研制进展
本人在2010年就曾在科学网上介绍D-Wave量子计算机(D-Wave系统是量子计算吗?(100123))8年过去了,大公司都在量子计算领域进行探索。超级计算机按老路走下去,已经碰到瓶颈了,不能靠扎钱走下去了。而另一方面,计算机应用,譬如人工智能、大数据却叫得很响,这些应用的基础设备必须跟上。
双极磁性半导体的性质和潜在应用
自旋一般只能通过磁场来调控,这使自旋器件微型化和集成化难以实现,而用电场调控则可解决此矛盾。因此,如何实现利用电场调控电子的自旋,是自旋电子学面临的关键科学问题之一。双极磁性半导体就是为解决此问题而提出的。此类材料的独特之处在于其价带顶与导带底具有相反的自旋极化方向,因而可通过调节费米能级的位置(例