重大科仪专项“人体肺部磁共振成像系统”中期评估会召开

2015年11月27日,国家重大科研仪器设备研制专项“用于人体肺部重大疾病研究的磁共振成像仪器系统研制”中期评估会议在武汉召开。国家自然科学基金委员会(以下简称基金委)医学科学部副主任孙瑞娟出席会议并讲话,指出国家重大科研仪器研制项目是基金委鼓励创新性研究的重要举措,希望通过对重大仪器的研制,能够进一步促进生命科学、医学领域的基础研究。 根据《国家重大科研仪器设备研制专项实施管理工作细则》要求,本次中期检查评估组由重大科研仪器专项专家委员会委员、科学部专家咨询委员会委员、管理工作组专家、科技财务评审专家以及相关专业同行专家等共11位专家组成。 复旦大学王威琪教授、中国科学院深圳先进技术研究院郑海荣研究员担任组长并主持会议。专家组分别听取了项目负责人周欣研究员以及5位子课题负责人的项目进展报告,之后进行了现场实地考察和认真讨论,最终形成了中期检查意见。专家组一致认为,该项目已完成前三年的预定研究目标。对......阅读全文

重大科仪专项“人体肺部磁共振成像系统”中期评估会召开

  2015年11月27日,国家重大科研仪器设备研制专项“用于人体肺部重大疾病研究的磁共振成像仪器系统研制”中期评估会议在武汉召开。国家自然科学基金委员会(以下简称基金委)医学科学部副主任孙瑞娟出席会议并讲话,指出国家重大科研仪器研制项目是基金委鼓励创新性研究的重要举措,希望通过

中国科研人员提出人体肺部气体磁共振快速成像新技术

   中新社武汉4月16日电 中国科学院武汉物理与数学研究所16日透露,该所波谱与原子分子物理国家重点实验室周欣研究团队基于自主研发的科学仪器,提出人体肺部的快速成像新技术,实现目前世界上最快的肺部气体磁共振成像(MRI)高分辨动态采样速率,为肺部重大疾病的早期诊断提供新利器。   肺部重大疾病(

中国科研人员提出人体肺部气体磁共振快速成像新技术

   中国科学院武汉物理与数学研究所16日透露,该所波谱与原子分子物理国家重点实验室周欣研究团队基于自主研发的科学仪器,提出人体肺部的快速成像新技术,实现目前世界上最快的肺部气体磁共振成像(MRI)高分辨动态采样速率,为肺部重大疾病的早期诊断提供新利器。 肺部重大疾病(如肺癌、慢性阻塞性肺疾病)

“点亮”肺部“黑洞”仅需3.5秒-我国磁共振成像新突破

  龙年新春伊始,一批国家重大科研仪器设备正在抓紧研发,进行关键核心技术攻关。近日,在中国科学院精密测量院,科研团队围绕磁共振成像持续攻关,获得一系列技术新突破。  吸入一口特制的“氙气”,只需3.5秒,就能得到一幅人体肺部磁共振3D影像。图像中,气体可抵达肺部的位置清晰可见,肺部微结构、健康状态等

周欣矢志研究肺部磁共振成像技术——奋斗的人生-不会虚度

  肺癌,是我国癌症中的“头号杀手”。由于缺少一种无放射性的医学影像仪器来获得肺部的结构和功能信息,极大阻碍了肺部重大疾病的深入研究。但是,今年2月1日,由中国科学院武汉物理与数学研究所副所长周欣(见图,资料照片)牵头研发的人体肺部磁共振成像系统仪器,通过了国家重大科研仪器专家组验收,并且性能远远超

科技突破!超快速3.5秒生成人体肺部磁共振3D影像

  龙年新春伊始,一批国家重大科研仪器设备正在抓紧研发,进行关键核心技术攻关。近日,在中国科学院精密测量院,科研团队围绕磁共振成像持续攻关,获得一系列技术新突破。  吸入一口特制的“氙气”,只需3.5秒,就能得到一幅人体肺部磁共振3D影像。图像中,气体可抵达肺部的位置清晰可见,肺部微结构、健康状态等

超灵敏MRI技术:照亮人体肺部

 人口健康直接影响到一个国家的经济发展和社会进步。据我国2013年发布的肿瘤发病率统计年报表明,肺癌是我国目前首位恶性肿瘤,是癌症死亡的头号杀手,目前城市中每4名死亡的癌症患者中,约有1名是肺癌。如何开发仪器进行肺部疾病的早期诊断成为当前国际医学界和科学界研究的热点。   近期,中国科学院武汉物理

深圳先进院3.0T人体磁共振成像系统进入正式运行

  华南地区首台3.0T 科研用人体磁共振成像系统(MRI)8月19日在中科院深圳先进技术研究院劳特伯医学影像科技平台完成安装调试工作,并进入正式科研运营及对外合作研究服务。至此,该高端医学影像科技平台已配备了磁共振系统、CT成像系统、功能超声、光学成像、太赫兹成像、图像引导手术等多模

我国自主研发的超极化气体肺部磁共振成像仪获得首幅影像

人口健康直接影响到一个国家的经济发展和社会进步。近年来,由于吸烟、空气污染、人口老龄化等多种因素,我国肺部疾病的发病率逐年上升。研发出更有效的仪器进行肺部疾病的早期诊断成为当前国际医学界研究的热点和难点。 2010年,中国科学院武汉物理与数学研究所波谱与原子分子物理国家重点实验室

氙129肺部磁共振仪器检测:一口“仙气”点亮肺部

  上图为中科院武汉物数所周欣在操作“点亮”肺部的核心设备:一台能放大氙气信号的自主研发设备。中图为中科院武汉物数所的研究团队发布我国首幅超极化氙-129肺部磁共振影像。经济日报记者 杜 芳 摄 下图为受试者被推进核磁共振谱仪进行检测。  中国科学院武汉物理与数学研究所成功研制出气体产率高

磁共振成像的优点

  与1901年获得诺贝尔物理学奖的普通X射线或1979年获得诺贝尔医学奖的计算机层析成像(computerized tomography,CT)相比,磁共振成像的最大优点是它是当前少有的对人体没有任何伤害的安全、快速、准确的临床诊断方法。如今全球每年至少有6000万病例利用核磁共振成像技术进行检查

武汉物数所在人体温的磁共振成像精确探测研究中获进展

  磁共振是一种优异的非侵入性临床诊断技术,但是受限于其灵敏度,针对肿瘤组织与正常组织微环境间的差异,特别是微小温度差异的检测并不能取得很好的效果。近日,中国科学院武汉物理与数学研究所研究员周欣带领的超灵敏磁共振研究组,发展了一种针对人体生理温度范围内微小温度差异进行磁共振探测的新方法,相关成果以封

脊索瘤的磁共振成像诊断及鉴别诊断实验—磁共振成像法

实验方法原理原子核具有一定的质量和一定的体积,可以把它看成是一个接近球形的固体。实验表明,大多数的原子核如同陀螺一样,都围绕着某个轴作自旋运动。例如,常见的 H11和C136(6是质子数即原子序数,也是电荷数;13是质量数=质子数+中子数)核等都具有这种运动。原子核的自身旋转运动称为核的自旋运动。一

点亮肺部-国产高端磁共振装备的攻坚路

 图片来源:视觉中国■本报记者 李思辉人体肺部多核磁共振成像系统外观图。周欣(左二)团队开展实验。周欣读博期间开展超灵敏磁共振研究。人体肺部多核磁共振成像系统支持武汉战“疫”。人体肺部多核磁共振成像系统进入临床应用。“这样的装备,我们太需要了,能否赶紧安装到金银潭医院来?”新冠疫情中,患者感染最多发

只需3.5秒,肺部磁共振技术取得新突破

原文地址:http://news.sciencenet.cn/htmlnews/2024/2/517849.shtm

全球领先!我国高端磁共振装备成功“点亮肺部”

  1月4日,《中国科学报》记者从湖北省科技厅和中科院精密测量院了解到,由湖北省整合资源,中科院精密测量院等单位研制的新一代高端磁共振装备——“医用氙气体发生器”获批二类医疗器械注册。据悉,这是全球首个获批的人体多核磁共振成像系统核心装置的医疗器械注册证。  高端磁共振装备是临床诊断和生命科学研究的

快速磁共振成像技术问世

  为了能够进行慢速扫描,医生们一直在和那些不停扭动的儿童作斗争。   如今,幸亏更快速的磁共振成像(MRI)技术的研制成功,他们可能再也不用焦虑如何让自己的病人保持长时间的静止了。   图中所展示的对一名6岁先天性心脏病患者的心脏血流情况进行的成像仅需要10分钟,而非传统MRI

磁共振成像的其他进展

    核磁共振分析技术是通过核磁共振谱线特征参数(如谱线宽度、谱线轮廓形状、谱线面积、谱线位置等)的测定来分析物质的分子结构与性质。它可以不破坏被测样品的内部结构,是一种完全无损的检测方法。同时,它具有非常高的分辨本领和精确度,而且可以用于测量的核也比较多,所有这些都优于其它测量方法。因此,核磁共

磁共振成像历史发展介绍

  磁共振成像是一种较新的医学成像技术,国际上从一九八二年才正式用于临床。它采用静磁场和射频磁场使人体组织成像,在成像过程中,既不用电子离辐射、也不用造影剂就可获得高对比度的清晰图像。它能够从人体分子内部反映出人体器官失常和早期病变。它在很多地方优于X线CT。虽然X-CT解决了人体影像重叠问题,但由

磁共振成像(MRI)是什么

MRI为Magnetic Resonance Imaging的缩写,中文称“磁共振或磁共振成像”,过去曾称“核磁共振”,亦可称共轭摄影法。MRI是一种新颖的成像方法,它具有组织对比性强、空间分辨率高、多平面的解剖结构显示和无射线损伤等特点,并对生理变化特别敏感。近年来,医学影像学技术飞速发展,已有4

核磁共振的成像原理

核磁共振成像原理原子核自旋,有角动量。由于核带电荷,它们的自旋就产生磁矩。当原子核置于静磁场中,本来是随机取向的双极磁体受磁场力的作用,与磁场作同一取向。以质子即氢的主要同位素为例,它只能有两种基本状态:取向“平行”和“反向平行”,他们分别对应于低能和高能状态。精确分析证明,自旋并不完全与磁场趋向一

核磁共振成像简介

  核磁共振成像(英语:Nuclear Magnetic Resonance Imaging,简称NMRI),又称自旋成像(英语:spin imaging),也称磁共振成像(Magnetic Resonance Imaging,简称MRI),是利用核磁共振(nuclear magnetic reso

核磁共振成像特点

一、无损伤性检查。CT、X线、核医学等检查,病人都要受到电离辐射的危害,而MRI投入临床20多年来,已证实对人体没有明确损害。孕妇可以进行MRI检查而不能进行CT检查。二、多种图像类型。CT、X线只有一种图像类型,即X线吸收率成像。而MRI常用的图像类型就有近10种,且理论上有无限多种图像类型。通过

磁共振成像的发展历程

1978 年底,第一套磁共振系统在位于德国埃尔兰根的西门子研究基地的一个小木屋中诞生。 1979 年底,当系统终于可以工作时,它的第一件作品是辣椒的图像。第一张人脑影像于 1980年 3 月获得,当时的数据采集时间为 8 分钟。  1983 年,西门子在德国汉诺威医学院成功安装了第一台临床磁共振成像

磁共振成像的发展历程

1978 年底,第一套磁共振系统在位于德国埃尔兰根的西门子研究基地的一个小木屋中诞生。 1979 年底,当系统终于可以工作时,它的第一件作品是辣椒的图像。第一张人脑影像于 1980年 3 月获得,当时的数据采集时间为 8 分钟。  1983 年,西门子在德国汉诺威医学院成功安装了第一台临床磁共振成像

2000万元的3.0T高场人体磁共振成像系统落户深圳

  7月19日,一台价值近2000万元的3.0T高场人体磁共振成像系统落地深圳,在中科院深圳先进技术研究院劳特伯医学影像科技平台完成安装调试。据悉,这是我国华南及港澳地区目前配备的第一台专门用于科学研究的人体高场磁共振成像系统。 至此,致力于高端医学影像研究的深圳先进院劳特伯医学

国产高端医疗设备,向一流迈进

原文地址:http://news.sciencenet.cn/htmlnews/2023/8/505823.shtm   周欣正在分析人体成像仪在临床上的应用情况。受访者供图 ■本报记者 李思辉 刁雯蕙 “‘四个率先’的殷切期许,坚定了我们攻坚克难、实现高端医疗设备‘从0到1’

磁共振波谱成像的简介

  核磁共振波谱成像是近年来一种新型的高科技影像学检查方法,是80年代初才应用于临床的医学影像诊断新技术。它具有无电离辐射性(放射线)损害;无骨性伪影;能多方向(横断、冠状、矢状切面等)和多参数成像;高度的软组织分辨能力;无需使用对比剂即可显示血管结构等独特的优点。

英攻克磁共振成像新技术

最新的磁共振成像研究使人们进一步了解脑部疾病。图片来源:英国诺丁汉大学  磁共振成像(MRI)领域的一项新发现有望提高多发性硬化症等脑部疾病的诊断率和监测效果。研究人员指出,来自英国诺丁汉大学彼得·曼斯菲尔德爵士磁共振中心的这一研究成果,可能会为医学界的磁共振成像提供一种新工具。  该项研究发表在日

核磁共振成像性能原理

  从宏观上看,作进动的磁矩集合中,相位是随机的。它们的合成取向就形成宏观磁化,以磁矩M表示。就是这个宏观磁矩在接收线圈中产生核磁共振信号。在大量氢核中,约有一半略多一点处于低等状态。可以证明,处于两种基本能量状态核子之间存在动态平衡,平衡状态由磁场和温度决定。当从较低能量状态向较高能量状态跃迁的核