Antpedia LOGO WIKI资讯

Nature解开植物成功受精之谜

最近,日本名古屋大学JST-ERATO Higashiyama Live-Holonics项目和转化生物分子研究所(ITbM)的Hidenori Takeuchi博士和Tetsuya Higashiyama教授,成功地发现了开花植物花粉管(雄性)中的一个关键激酶受体,可让花粉管准确到达卵细胞(雌性),以成功受精,而不会迷失方向。这项研究在线发表于2016年3月10日的《Nature》杂志。 花粉管生长在雌蕊里面,并向雌蕊深处的卵细胞提供它们的精子细胞,引发受精。Higashiyama研究组先前已发现一个花粉管引诱肽,称为LURE,这是由胚珠产生,可引导花粉管到达卵细胞。研究表明,LURE的结构在各种植物之间有所差异,是每种植物的花粉管所特有的,即,每个LURE肽优先吸引相同植物种类的花粉管。然而,花粉管如何检测到LURE的精确机制,一直都不明确。 在这项研究中,Takeuchi和Higashiyama发现了一个受体,是模......阅读全文

Nif对白皮松花粉萌发和花粉管生长的调节

实验概要本研究以白皮松花粉为实验材料,用不同浓度钙通道抑制剂Nif处理花粉和花粉管,结合Fluo-3AM荧光标记探讨Ca2 在白皮松花粉萌发和花粉管生长过程中的作用。此外运用Ca2 螯合剂及外加钙调素研究Ca2 包括细胞壁钙库对白皮松花粉萌发和花粉管生长作用。主要试剂1. 蔗糖、CaCl2和硼酸均用

南京农大PLOS Genetics发表植物遗传学成果

  7月22日,国际学术期刊《PLOS Genetics》在线刊登了南京农业大学和香港中文大学的一项最新研究成果,题为“Arabidopsis COG Complex Subunits COG3 and COG8 Modulate Golgi Morphology, Vesicle Traffick

Nif对白皮松花粉管细胞壁构建的影响

实验概要本实验研究了钙通道抑制剂Nif处理对花粉管细胞壁主要成分的分布及含量的影响。主要试剂1. 0.1%无色水溶性苯胺蓝:0.1 g水溶性苯胺蓝,用0.15 M K2HPO4(pH 8.2)溶解。新配制的溶液有色,碱性条件下经过数小时变成脱色溶液即可使用。2. Calcofluor (fluore

钙-钙调素对白杄花粉萌发和花粉管生长的调节

实验概要本实验以白杄花粉为实验材料,用不同浓度钙调素拮抗剂TFP及外施钙调素处理培养的花粉,结合荧光标记和免疫抗体标记技术分析游离钙离子和钙调素在花粉管中的定位,探讨钙-钙调素信使系统在花粉萌发和花粉管生长过程中的生理作用。主要试剂1.      C

Nif对花粉管微丝骨架介导的胞吞、胞吐作用的调节

实验概要了解Nif对花粉管微丝骨架介导的胞吞、胞吐作用的调节作用。主要试剂FM4-64 (Molecular Probes,Inc. Eugene,OR)用DMSO溶解,配制成200µM的母液,-20℃避光保存。主要设备摇床激光共聚焦显微镜(ZEISS,META550)JEM-1230电子显微镜(J

植物所在细胞极性生长研究领域取得新进展

FIMBRIN5缺失引起花粉管中微丝排布紊乱 (A为野生型花粉管,B-I为fim5-1花粉管,J对花粉管槽部微丝与细胞伸长轴的角度进行统计的结果)。  微丝细胞骨架控制细胞极性建立和细胞极性生长,但潜在的分子机理人们还知之甚少。中科院植物研究所信号转导与代谢组学研究中心的黄善金研究组对花粉中高度表达

百人博士发09第5篇研究性文章

  据报道,2009年上半年,中科院植物研究所分子发育生物学研究中心的林金星博士连发4篇文章,7月再发一篇,Lipid microdomain polarization is required for NADPH oxidase-dependent ROS signaling in Picea me

小麦花粉萌发与双受精过程

本实验以小麦为材料,观察小麦花粉在柱头上萌发和花粉管生长情况。在示范镜下观察小麦双受精过程中雌、雄性核的融合情况。并进行花粉人工诱导萌发试验,测定花粉生活力。 (一)小麦花粉在柱头上的萌发 取扬花时小麦柱头的整体封片进行观察。在制片中可看到小麦柱头二裂,羽毛状,具多分枝。大量花粉落在柱头上,

3月19日《自然》杂志精选

      封面故事:引导花粉管生长的化学引诱剂   本期封面所示为一个花粉管在一种新发现的化学引诱剂LURE1引诱下按字母“N”的形状生长。精确的花粉管引导是开花植物成功受精的关键。花粉管引诱剂的概念是19世纪末提出的,当时人们发现花粉管朝介质上被切除的雌蕊组织的方向生

三氟拉嗪对花粉管顶端胞吞胞吐活性和细胞器状态的影响

实验概要本实验主要应用荧光标记技术、透射电镜技术等手段,分析白杄花粉管中钙-钙调素信号系统受到抑制之后,细胞结构、细胞器分布与状态、胞吞/胞吐以及细胞超微结构等的变化。主要试剂1. FM4-64 (Molecular Probes,Inc. Eugene,OR) 用DMSO溶解,配制成200 µM的

遗传发育所揭示植物细胞膨压调控机制

  膨压普遍存在于植物细胞,与生长发育密切相关,但对其调控的分子机制了解非常有限。中国科学院遗传与发育生物学研究所杨维才研究组通过对植物花粉管进行研究,发现了一个影响花粉管体内生长的突变体turgor regulation defect 1 (tod1),其花粉管内钙离子浓度下降,在花柱内生长缓慢,

花粉管的生长及其向化性实验

实验方法原理 成熟的花粉落到柱头上就会萌发,长出花粉管,人为地给以适当条件(温度、pH、介质渗透压)也能使花粉萌发。花粉萌发和花粉管的生长需要一定的营养(包括有机物质和无机物质)。各个花粉粒之间有密切的相互关系,当花粉密度大时,萌发较快,生长也较好,这就是所谓"集体效应"

花粉管的生长及其向化性实验

实验方法原理成熟的花粉落到柱头上就会萌发,长出花粉管,人为地给以适当条件(温度、pH、介质渗透压)也能使花粉萌发。花粉萌发和花粉管的生长需要一定的营养(包括有机物质和无机物质)。各个花粉粒之间有密切的相互关系,当花粉密度大时,萌发较快,生长也较好,这就是所谓"集体效应";同时,雌

花粉管的生长及其向化性实验

实验方法原理:成熟的花粉落到柱头上就会萌发,长出花粉管,人为地给以适当条件(温度、pH、介质渗透压)也能使花粉萌发。花粉萌发和花粉管的生长需要一定的营养(包括有机物质和无机物质)。各个花粉粒之间有密切的相互关系,当花粉密度大时,萌发较快,生长也较好,这就是所谓"集体效应";同时,

中国科学家发现植物雌雄识别的“钥匙”

  被子植物的花粉在空气中传播时如何“标同伐异”?中国科学家找到一把“钥匙”,首次分离到花粉管识别雌性吸引信号的受体蛋白复合体,并揭示了信号识别和激活的分子机制。  中国科学院遗传与发育生物学研究所杨维才研究员领导的研究组完成这项研究,研究成果已在线发表于最新一期《自然》杂志。  科学家们发现,被子

首个突破 我国克隆玉米单向杂交不亲和基因

记者从中国科学院遗传与发育生物学研究所获悉,该所陈化榜研究组与周奕华研究组及薛勇彪研究组合作,在玉米单向杂交不和基因研究领域取得突破,首次克隆了控制玉米单向杂交不亲和现象的基因ZmGa1P,并对其不亲和机理进行了探究。该成果于2018年9月10日在Nature Communications杂志

植物自交不亲和性测定技术

自交不亲和性在白菜、甘蓝等十字花科蔬菜中是普遍存在的,其遗传机制也较相似。自交不亲和株正开放花的柱头上,如果授于同株或同系统的花粉时,柱头就被激发产生胼胝质等物质,阻碍花粉发芽和花粉管发育,故不能正常受精结实,不结子或结少量种子;而授于别的品种或系统的花粉时,则柱头不会被激发产生这类物质,故能正常受

《Science》发表非损伤微测技术研究Ca2+流速的成果

D型丝氨酸调节谷氨酸受体基因构成的Ca2+通道        2011年3月17日,葡萄牙里斯本大学José Feijó教授的研究成果在世界知名杂志《Science》以“Research Article”的形式在线发表,中国农业大

植物所研究发现拟南芥VILLIN5调控花粉管极性生长

         拟南芥VILLIN5的缺失引起花粉粒和花粉管中微丝不稳定  众所周知,微丝细胞骨架的动态组装控制花粉管的极性生长。然而到目前为止,人们对花粉管如何精密调控微丝的动态组装还知之甚少。  中科院植物研究所黄善金研究组对花粉中高度表达的微丝相关蛋白VILLIN5进行了功能

我国克隆首个玉米单向杂交不亲和基因

  记者从中国科学院遗传与发育生物学研究所获悉,该所陈化榜研究组与周奕华研究组及薛勇彪研究组合作,在玉米单向杂交不和基因研究领域取得突破,首次克隆了控制玉米单向杂交不亲和现象的基因ZmGa1P,并对其不亲和机理进行了探究。该成果于2018年9月10日在Nature Communications杂志上

非损伤性扫描离子选择电极技术及其在后基因组...(六)

3.1. 植物生理学SIET在植物学研究中的应用,在该技术的诞生以及发展过程中始终占有相当大的比例。这可能与植物细胞外的细胞壁对向膜片钳这样的技术来讲操作较为困难有关。而利用SIET特有的非损伤性特点,可以在不对细胞、组织甚至器官造成任何损伤的情况下测知离子分子的运输情况。正是意识到SIET的这一优

《Science》发表非损伤微测技术研究Ca2+流速的成果

D型丝氨酸调节谷氨酸受体基因构成的Ca2+通道2011年3月17日,葡萄牙里斯本大学José Feijó教授的研究成果在世界知名杂志《Science》以“Research Article”的形式在线发表,中国农业大学资源环境学院的刘来华教授参与了本项研究。细胞内游离Ca2+的增加构成了真核细胞基本的

花粉管中线粒体移动的活体动态观测

实验概要在本实验中,应用Mitotracker Red染料对花粉管中线粒体进行活体标记,并结合激光共聚焦显微镜和隐失波显微镜技术,研究了花粉管细胞骨架及其相应的马达蛋白等对于线粒体分布、线粒体的移动和停泊的调节作用。主要试剂MitoTracker Red CMXRos (Molecular Prob

遗传发育所揭示调控植物TGN形成的分子机制

  高尔基体不仅是细胞内膜系统膜泡运输的核心,而且也是细胞壁和胞外基质多糖、质膜糖脂合成以及蛋白糖基化修饰的位点。不同于动物细胞,植物细胞高尔基体产生一个分离的、独立完成不同功能的反面管网结构TGN(Trans-Golgi Network),专门负责分选和分泌来自反面膜囊的物质。同时,TGN兼任了早

转基因植物及其安全性研究进展

  摘要:介绍了目前常用的植物转基因方法,并简要就转基因植物的生态安全性、35S启动子安全性、栽体骨架序列安全性、抗生素抗性标记基因安全性和食品安全性五个方面进行了综述。   21世纪,生命科学成为了自然科学中的主导科学。生物技术的核心是基因工程技术,新的技术带来了巨大的科学发展及经济效益,同时

转基因植物及其安全性研究进展

  摘要:介绍了目前常用的植物转基因方法,并简要就转基因植物的生态安全性、35S启动子安全性、栽体骨架序列安全性、抗生素抗性标记基因安全性和食品安全性五个方面进行了综述。   21世纪,生命科学成为了自然科学中的主导科学。生物技术的核心是基因工程技术,新的技术带来了巨大的科学发展及经济效益,同时

我国学者发现AGL80可决定中央细胞命运

  被子植物是当今植物界中种类最多、分布最广、适应性最强的类群。有别于其它植物类群,被子植物进化出了独特的双受精生殖模式,即雄配子体花粉中的两个精细胞分别与雌配子体内部的卵细胞和中央细胞融合,并进一步发育成胚和胚乳。被子植物双受精机制的出现导致了胚乳的产生,能够为新生的胚提供必要的养分从而确保胚的正

选择性微电极在植物生理学研究中的应用(三)

3        在植物生长发育研究中的应用光通过光周期和非光周期过程影响着叶片的展开。选择性微电极能探测到光诱导引起的与叶片生长有关的离子或分子信息。Zivanovic等(2005)利用选择性微电极比较了白光(2600 μmol

2016中国生命科学领域十大进展公布

  日前,中国科协生命科学学会联合体组织18个成员学会推荐,由生命科学领域专家审核并评选出2016年度“中国生命科学领域十大进展”。  植物分枝激素独脚金内酯的感知机制植物分枝激素独脚金内酯的感知机制示意图  植物激素调控植物的繁衍生息,与人类生存环境和粮食安全息息相关。独脚金内酯作为新型植物激素,

北京大学长江教授PNAS发表信号传导新成果

  细胞要执行自己的生物学功能,必须能够对外部和内部信号做出响应。在任务完成之后,这些信号需要被减弱并终止。细胞一般通过内吞转运来搞定这件事,对信号传导活动的进行控制。  酵母和哺乳动物细胞通过液泡前体(PVC)和液泡来收缴信号分子,终止信号传导。在哺乳动物细胞中,破坏液泡分选蛋白VPS41介导的内