北大昌增益教授最新文章:ATP合酶作用新机制
ATP合酶利用跨膜离子(主要是质子)梯度提供的能量, 催化由ADP和Pi(磷酸)合成ATP的反应. 已有证据表明, 这种催化反应通过ATP合酶内部亚基之间的相对旋转而实现. 然而, 现有的基于整合在细胞膜内的c环及附着于其上的中心杆(由e和g亚基组成)转动的ATP合酶旋转模型存在多方面的理论缺陷, 也与某些实验数据不符. 来自北京大学生命科学学院的昌增益教授等人提出了一种新的ATP合酶旋转催化模型, 其中发生旋转的是α3β3六聚体. 具体而言, 质子的跨膜转运引起c环的周期性构象改变, 从而使得附着在c环上的中心杆产生往复运动, 这种往复运动驱动α3β3六聚体的连续转动. 这种工作模式与按压式伸缩圆珠笔中推杆的往复运动驱动凸轮产生连续转动的工作机理十分相似. 新模型不仅避免了现有模型的理论缺陷, 而且更好地解释了已有实验数据. ATP合酶是一种由多个亚基组装而成的存在于所有生物体内的关键能量转换装置, 它利用细胞膜两侧的......阅读全文
ATP合酶的组成
ATP合酶主要由F₁(伸在膜外的水溶性部分) 和Fo(嵌入膜内)组成(图1)。不同物种来源的 ATP合酶含的亚基和数目不尽相同。以牛心线粒体 ATP合酶为例,它的F₁含有仅α3、β3、γ、δ、ε共9 个亚基,Fo含a、b2、C10共13个亚基,F₁与Fo之间有OSCP柄相连接,还有抑制蛋白。线粒体F
ATP合酶的组成
ATP合酶主要由F₁(伸在膜外的水溶性部分) 和Fo(嵌入膜内)组成(图1)。不同物种来源的 ATP合酶含的亚基和数目不尽相同。以牛心线粒体 ATP合酶为例,它的F₁含有仅α3、β3、γ、δ、ε共9 个亚基,Fo含a、b2、C10共13个亚基,F₁与Fo之间有OSCP柄相连接,还有抑制蛋白。线粒体F
ATP合酶的主要组成
ATP合酶主要由F₁(伸在膜外的水溶性部分) 和Fo(嵌入膜内)组成。不同物种来源的 ATP合酶含的亚基和数目不尽相同。以牛心线粒体 ATP合酶为例,它的F₁含有仅α3、β3、γ、δ、ε共9 个亚基,Fo含a、b2、C10共13个亚基,F₁与Fo之间有OSCP柄相连接,还有抑制蛋白。线粒体F₁Fo-
ATP合酶的组成介绍
ATP合酶由两部分组成(Fo-F1),球状的头部F1突向基质液,水溶性。亚单位Fo埋在内膜的底部,是疏水性蛋白,构成H+ 通道。在生理条件下,H+ 只能从膜外侧流向基质,通道的开关受柄部某种蛋白质的调节。ATP合酶,又称“复合体V”,是氧化磷酸化途径中的终点酶。无论在原核生物还是真核生物中,这种酶的
化学所发表ATP合酶体外重组综述文章
以天然生物活性分子为基元,利用分子组装策略构建新型的仿生体系,模拟生命基本单元的结构与功能,能有助于在分子层面上理解与认知生物活动的本质与物理化学机制,已发展成为组装生物学的研究新方向。 ATP合酶是自然界中最小的生物分子马达,在生物能的产生和转化方面起着关键作用。生命活动所必需的能量三磷酸腺
叶绿体ATP酶的催化作用过程
催化在叶绿体中合成ATP的酶与线粒体中的ATP酶十分相似。叶绿体中ATP酶也像门把位于类囊膜外侧。存在于不垛叠的类囊膜中。ATP酶可分为CF1和CF0两部分。CF0插在膜中,起质子通道作用,CF1由α3、β3、γ、δ、ε亚基组成,α、β亚基有结合ADP的功能,γ亚基控制质子流动,δ亚基与CF0结合,
北大昌增益教授最新文章:ATP合酶作用新机制
ATP合酶利用跨膜离子(主要是质子)梯度提供的能量, 催化由ADP和Pi(磷酸)合成ATP的反应. 已有证据表明, 这种催化反应通过ATP合酶内部亚基之间的相对旋转而实现. 然而, 现有的基于整合在细胞膜内的c环及附着于其上的中心杆(由e和g亚基组成)转动的ATP合酶旋转模型存在多方面的理论缺陷
什么是ATP酶?
ATP酶又称为三磷酸腺苷酶,是一类能将三磷酸腺苷(ATP)催化水解为二磷酸腺苷(ADP)和磷酸根离子的酶,这是一个释放能量的反应。在大多数情况下,能量可以通过传递而被用于驱动另一个需要能量的化学反应。这一过程被所有已知的生命形式广泛利用。
ATP合成的部位——ATP酶的相关介绍
质子反向转移和合成ATP是在ATP酶(腺苷三磷酸酶 adenosine triphosphatase,ATPase)上进行的。叶绿体内囊体膜上的ATP酶也称偶联因子(coupling factor)或CF1-CF0复合体。叶绿体的ATP酶与线粒体、细菌膜上的ATP酶结构十分相似,都由两个蛋白复合
钾ATP酶的组成
Na—K 泵由α、β两亚基组成。α亚基为分子量约 120KD 的跨膜蛋白,既有Na、K 结合位点,又具 ATP 酶活性,因此 Na—K 泵又称为 Na—K—ATP 酶。β亚基为小亚基,是分子量约 50KD 的糖蛋白。一般认为 Na—K 泵首先在膜内侧与细胞内的 Na 结合,ATP 酶活性被激活后,由
钾ATP酶的组成
Na—K 泵由α、β两亚基组成。α亚基为分子量约 120KD 的跨膜蛋白,既有Na、K 结合位点,又具 ATP 酶活性,因此 Na—K 泵又称为 Na—K—ATP 酶。β亚基为小亚基,是分子量约 50KD 的糖蛋白。一般认为 Na—K 泵首先在膜内侧与细胞内的 Na 结合,ATP 酶活性被激活后,由
ATP酶的应用特点
ATP合成酶是一类线粒体与叶绿体中的合成酶,它广泛存在于线粒体、叶绿体、原核藻、异养菌和光合细菌中,是生物体能量代谢的关键酶。ATP合成酶可以在跨膜质子动力势的推动下,利用ADP和Pi催化合成生物体的能量“通货”——ATP。一般来说,机体所需的大多数ATP都是由ATP合酶产生的。据估计,人体每天进行
ATP酶的作用机制
关于ATP酶催化ADP氧化磷酸化成ATP的机制,先后提出过几种假说 1、化学偶联假说;2、构象假说;3、化学渗透假说。目前流行的是化学渗透假说,由英国生物化学家P.Mitchell于1961年提出。该学说很好地说明线粒体内膜中电子传递、质子电化学梯度建立、ADP磷酸化的关系,并具有大量的实验支持,得
ATP酶的反应机制
ATP酶与ATP水解反应耦合的转运是一个严格的化学反应,即每分子ATP水解能够使一定数量的溶液分子被转运。例如,对于钠钾ATP酶,每分子ATP水解能够使3个钠离子被运出细胞,同时2个钾离子被运入。跨膜ATP酶需要ATP水解所产生的能量,因为这些酶需要做功:它们逆著热力学上更容易发生的方向来进行物质运
怎样合理使用ATP酶?
ATP作为一种辅酶,有改善肌体代谢的作用,可参与体内脂肪、蛋白质、糖、核酸、核苷酸等代谢过程。它同时又是体内能量的主要来源,为吸收、分泌、肌肉收缩以及进行生化合成反应等过程提供所需要的能量。常用于心肌病、肝炎、进行性肌萎缩、神经性耳聋等疾病的治疗. ATP广泛用于改善机体代谢,以及疾病的辅助治
人ATP酶(ATPase)酶联免疫分析
人ATP酶(ATPase)酶联免疫分析试剂盒使用说明书本试剂仅供研究使用 目的:本试剂盒用于测定人血清,血浆及相关液体样本中ATP酶(ATPase)的含量。实验原理: 本试剂盒应用双抗体夹心法测定标本中人ATP酶(ATPase)水平。用纯化的人ATP酶(ATPase)抗体包被微孔板,
化学所成功实现分子马达在蛋白微胶囊表面的组装
在科技部、国家自然科学基金委和中国科学院的支持下,胶体、界面与化学热力学院重点实验室的研究人员在旋转分子马达的分子仿生组装方面取得新进展,研究工作发表在近期出版的Adv. Mater. (2008, 20, 601-605) 上。 细胞生长代谢的整个过程需要能量,绝大多数情况下能量由ATP的高
Science:解析出嗜热栖热菌V/AATP酶的三维结构
细胞依赖于称为ATP合酶(ATP synthase)或ATP酶(ATPase)的蛋白复合物来满足它们的能量需求。三磷酸腺苷(ATP)分子为维持生命的大部分过程提供能量。在一项新的研究中,奥地利科学技术研究所的结构生物学者Leonid Sazanov和博士后研究员Long Zhou如今解析出V/A
化学所在生物分子马达组装及其应用研究方面获进展
自然界的细胞生命活动主要是通过生物分子马达协同运动来完成。近年来,以活性生物分子马达为构筑基元,利用分子组装技术,构建复杂的类细胞器结构,能很好地模拟细胞内的物质传递、能量转化和信息存储,已成为化学与生命科学交叉的研究热点。组装的生物分子马达杂化体系增强光转换效率 在国家自然科学基金委、科技部
液泡质子ATP酶的组成
液泡质子ATP酶由液泡膜H+-ATP酶及液泡膜焦磷酸酶组成。
钾ATP酶的生物现象
静息电位产生静息电位指安静时存在于细胞两侧的外正内负的电位差。其形成原因是膜两侧离子分布不平衡及膜对K+有较高的通透能力。细胞内K+浓度和带负电的蛋白质浓度都大于细胞外(而细胞外Na+和Cl-浓度大于细胞内),但因为细胞膜只对K+有相对较高的通透性,K+顺浓度差由细胞内移到细胞外,而膜内带负电的蛋白
液泡质子ATP酶的概念
液泡膜质子泵由液泡膜H+-ATP酶及液泡膜焦磷酸酶组成。其中液泡膜H+-ATP酶有以下特点:分子量400KD,水解ATP的活性位点在液泡膜的细胞质一侧。H+/ATP计量约为2~3。Cl-、Br-、I-等对该酶有激活作用。该酶可被硝酸盐抑制,但不被钒酸盐抑制。液泡膜H+-ATP酶与跨液泡膜的物质转运有
ATP酶的使用方法
ATP作为一种辅酶,有改善肌体代谢的作用,可参与体内脂肪、蛋白质、糖、核酸、核苷酸等代谢过程。它同时又是体内能量的主要来源,为吸收、分泌、肌肉收缩以及进行生化合成反应等过程提供所需要的能量。常用于心肌病、肝炎、进行性肌萎缩、神经性耳聋等疾病的治疗.ATP广泛用于改善机体代谢,以及疾病的辅助治疗,是心
ATP酶的生理功能
人体预存的ATP能量只能维持15秒,跑完一百公尺后就全部用完,不足的继续通过呼吸作用等合成ATP。纯净的ATP呈白色粉末状,能溶于水,作为药品可以提供能量并改善患者新陈代谢。ATP片剂可以口服,注射液可供肌肉注射或静脉注射。能源物质肌肉中储藏着多种能源物质,主要有三磷酸腺苷(ATP)、磷酸肌酸(CP
什么是钠钾ATP酶?
钠钾泵(Sodium-Potassium Pump)简称钠泵,即Na+,K+-ATP酶为细胞膜中存在的一种特殊蛋白质可以分解ATP获得能量,并利用此能量进行Na+、K+的主动转运,即能逆浓度梯度把Na+从细胞内转运到细胞外,把K+从细胞外转运入细胞内,ATP酶的主要作用是控制细胞膜内外的K+,N
什么是ATP合成酶?
ATP合成酶是一类线粒体与叶绿体中的合成酶,它广泛存在于线粒体、叶绿体、原核藻、异养菌和光合细菌中,是生物体能量代谢的关键酶。ATP合成酶可以在跨膜质子动力势的推动下,利用ADP和Pi催化合成生物体的能量“通货”——ATP。一般来说,机体所需的大多数ATP都是由ATP合酶产生的。据估计,人体每天进行
ATP酶的反应机制介绍
ATP酶与ATP水解反应耦合的转运是一个严格的化学反应,即每分子ATP水解能够使一定数量的溶液分子被转运。例如,对于钠钾ATP酶,每分子ATP水解能够使3个钠离子被运出细胞,同时2个钾离子被运入。 跨膜ATP酶需要ATP水解所产生的能量,因为这些酶需要做功:它们逆著热力学上更容易发生的方向来进
钠钾ATP酶的原理
钠钾泵(也称钠钾转运体),为蛋白质分子,进行钠离子和钾离子之间的交换。每消耗一个ATP分子,逆电化学梯度泵出3个钠离子和泵入2个钾离子。保持膜内高钾,膜外高钠的不均匀离子分布。
ATP酶的作用机制介绍
关于ATP酶催化ADP氧化磷酸化成ATP的机制,先后提出过几种假说 1、化学偶联假说; 2、构象假说; 3、化学渗透假说。 目前流行的是化学渗透假说,由英国生物化学家P.Mitchell于1961年提出。该学说很好地说明线粒体内膜中电子传递、质子电化学梯度建立、ADP磷酸化的关系,并具有
什么是ATP合成酶?
ATP合成酶,又称FoF₁-ATP酶在细胞内催化能源物质ATP的合成。在呼吸或光合作用过程中通过电子传递链释放的能量先转换为跨膜质子(H+)梯差,之后质子流顺质子梯差通过ATP合酶可以使ADP+Pi合成ATP。