化学所在有机共轭聚合物半导体研究方面取得系列进展
近年来,有机共轭聚合物由于具有优异的半导体性质,其研究受到广泛关注。人们发现聚合物的侧链不仅可以提高聚合物在有机溶剂中的溶解性,而且可以影响聚合物的半导体性能。 在中国科学院战略性先导科技专项的支持下,中科院化学研究所有机固体院重点实验室研究员张德清课题组科研人员在调控侧链改变聚合物半导体性能的研究方面取得系列研究进展。他们在聚合物侧链中引入脲基团,得到了侧链含功能基团的共轭聚合物,如图1所示。由于侧链间的氢键相互作用,聚合物薄膜的有序性增强;与不含脲基团的聚合物相比,其场效应晶体管迁移率由3.4 cm2V-1s-1提升到13.1 cm2V-1s-1,体异质结太阳能电池光电转换效率也由3.8%提升到6.8%。此研究结果为聚合物侧链的研究提供了新的思路,最近发表在《美国化学会志》上 (J. Am. Chem. Soc. 2016, 138, 173)。 进一步研究发现,在共轭给-受体聚合物(DPPTTT)薄膜中引入四甲基铵......阅读全文
新方法合成共轭聚合物用于肿瘤的光热治疗
光热材料能够利用阳光并将其转化为热能,从能源开发和环境保护的角度来看,开发光热材料显得格外有吸引力,其中碳基纳米材料和共轭聚合物都是前景广阔的光热材料。同时,越来越多的证据表明,一些光热材料辅以光热疗法可能会从脱落的肿瘤细胞残留物中生成肿瘤结合剂,从而产生抗肿瘤的免疫效应,有力增强了光热疗法的癌
青岛能源所在超宽带隙共轭聚合物研究中取得进展
有机半导体材料主要应用于有机场效应晶体管(OFET)、本体异质节太阳能电池(BHJ-OPV)、有机电致发光材料(OLED)以及传感器等,其结构便于设计、性能易于调控,以及可用于制备柔性电子器件等独特优势,吸引了科学界的广泛关注,是未来国家材料以及能源发展的重要方向之一。含有内酰胺官能团的异靛蓝分
基于共轭聚合物的疾病基因和蛋白检测新技术
共轭聚合物荧光探针对HT29、HepG2、A498、HL60和M17肿瘤细胞p16、HPP1和GALR2三种基因启动子的甲基化检测分析结果 发展疾病的早期、高灵敏诊断技术对促进重大疾病防治具有重要意义。共轭聚合物具有强的光捕获能力,可用来放大荧光传感信号,为生物传感器的
共轭聚合物的光学性能在生物领域的新应用
近年来,有机半导体因具有易功能化、高度生物相容性等优异性能而成为生物技术领域极具前景的材料。同时,有机半导体对可见光和近红外光有很强的敏感性。利用共轭聚合物和有机分子作为外源性光敏驱动器,对细胞电生理活动进行光调制,也可用于人工视觉假体、光热刺激或抑制细胞活性、调节动物行为等领域。但是很少考虑利
化学所在有机共轭聚合物半导体研究方面取得系列进展
近年来,有机共轭聚合物由于具有优异的半导体性质,其研究受到广泛关注。人们发现聚合物的侧链不仅可以提高聚合物在有机溶剂中的溶解性,而且可以影响聚合物的半导体性能。 在中国科学院战略性先导科技专项的支持下,中科院化学研究所有机固体院重点实验室研究员张德清课题组科研人员在调控侧链改变聚合物半导体性能
化学所共轭聚合物光伏材料的分子设计取得进展
在D-A共轭聚合物的受体单元上引入氟取代基,由于可以在不影响聚合物吸收光谱和迁移率的前提下,有效降低聚合物的HOMO能级,进而提高器件的开路电压和光伏性能,成为近几年来的研究热点;但是受限于受体单元在引入氟取代基时的选择性,这种方法只能应用于少数的聚合物光伏材料体系,因而,如何有效地拓展其在聚合
共轭体系的共轭效应介绍
在单烯烃中碳碳双键上的π电子的运动范围,局限在两个碳原子之间,称为定域运动。在双键单键双键共轭的体系,如1,3-丁二烯分子中4个碳原子上的π电子的运动范围,已不局限于两个碳原子之间,而是在4个碳原子的分子轨道中运动,称为离域现象。π电子的离域现象使得电子云的密度分布有所改变,内能降低,分子更趋于
Chem.-Mater.-|新型“糖桥”法实现荧光共轭聚合物靶向富集
铜绿假单胞杆菌(铜绿杆菌)在自然界中广泛存在,已有研究表明其对人类的免疫系统产生影响,从而引起感染性疾病发生。目前铜绿杆菌已对多种抗生素产生耐药性,因而发展新型抗菌方法尤为重要。抗菌材料作用于细菌时,需与细菌表面结合,而目前基于静电吸引与疏水作用的结合方式具有结合力低、非特异性结合等缺点。因此亟
侧链调控共轭聚合物半导体性能研究方面取得系列进展
近年来,有机共轭聚合物由于其优异的半导体性能,以及在多个领域的应用前景,受到广泛关注。载流子迁移率是有机半导体性能的重要参数。国内外众多课题组主要通过设计合成新的共轭分子和高分子来调节分子的电子结构和聚集态结构,进而提高载流子迁移率。近年来,研究结果表明共轭分子和高分子中的烷基侧链的结构不仅可以
化学所在共轭聚合物设计与生物医药应用领域获系列进展
共轭聚合物具有较强的光捕获能力,可用来放大荧光传感信号,在疾病诊断以及生物检测等方面发挥了越来越重要的作用。近几年来共轭聚合物在细胞与动物水平的荧光成像以及生物医学领域的应用也获得了高度关注。在国家自然科学基金委以及科技部的资助下,中国科学院化学研究所有机固体重点实验室的科研人员在共轭聚合物设计
化学所提出两维共轭聚合物光伏材料的分子设计策略
具有两维共轭结构的苯并二噻吩类聚合物是由中国科学院化学研究所研究人员发展起来的一类高性能的聚合物光伏材料,这类材料具有宽吸收、高迁移率等突出优点,成为聚合物太阳能电池领域的研究热点。近三年来,化学所高分子物理与化学重点实验室的研究人员在两维共轭聚合物光伏材料及其在聚合物太阳能电池方面的应用进行了
新型多功能共轭聚合物,提升钙钛矿太阳能电池性能
化石能源不具备可持续性,而且近代的大量使用带来了一系列环境影响,一直是困扰世界各国的难题。太阳能电池作为很有希望的应对方案之一,是世界范围内科学研究的焦点,低成本、可溶液加工、大面积、可弯曲的新一代太阳能电池,是很多科学家研究的目标。通过选用合适的空穴传输材料(HTMs)以及光伏给体材料,无机钙
我国学者以TzBI共轭聚合物为原料研制高效太阳能电池
在国家自然科学基金项目(项目编号:91633301、21520102006、21822505)等资助下,我国学者在聚合物太阳能电池研究中取得重要进展。研究成果以“Fine-tuning of the Chemical Structure of Photoactive Materials for
化学所二维共轭聚合物光伏材料的分子设计研究获系列进展
聚合物光伏材料的分子结构与其光伏性能具有十分密切的关系。根据目前报道的结果来看,对光伏聚合物的分子结构优化大多是针对某一个聚合物来进行的,也就是说,对于不同的分子结构,人们需要采用不同的方式对其进行优化。这不仅增大了分子结构优化工作的难度,也容易导致错过很多具有潜力的分子结构单元。因此,找到一种
什么是共轭效应?
共轭效应 (conjugated effect) ,又称离域效应,是指共轭体系中由于原子间的相互影响而使体系内的π电子(或p电子)分布发生变化的一种电子效应。凡共轭体系上的取代基能降低体系的π电子云密度,则这些基团有吸电子共轭效应,用-C表示,如-COOH,-CHO,-COR;凡共轭体系上的取代
什么是共轭效应?
在单烯烃中碳碳双键上的π电子的运动范围,局限在两个碳原子之间,称为定域运动。在双键单键双键共轭的体系,如1,3-丁二烯分子中4个碳原子上的π电子的运动范围,已不局限于两个碳原子之间,而是在4个碳原子的分子轨道中运动,称为离域现象。π电子的离域现象使得电子云的密度分布有所改变,内能降低,分子更趋于稳定
共轭效应的影响
所谓共轭效应,是指在分子中形成离域的pai键,使电子能在整个空间运动,从而降低了能量,使结构更稳定。对于一个产生共轭结构的反应,由于产物能量更低,会使得这个方向反应的趋势更大,另外就是对化学键性质的改变,例如在CH2=CH-CH=CH2中,四个碳是共轭结构,从而使得键长平均化,第二个C-C键变短,类
什么是共轭效应
共轭效应又称离域效应,是指共轭体系中由于原子间的相互影响而使体系内的π电子 (或p电子)分布发生变化的一种电子效应称为共轭效应。共轭体系能降低体系π电子云密度的基团有吸电子的共轭效应,能增高共轭体系π电子云密度的基团有给电子的共轭效应。单双建交替出现的体系或双键碳的相邻原子上有p轨道的体系均为共轭体
关于共轭效应的介绍
“共轭效应是稳定的”是有机化学的最基本原理之一。但是,自30年代起,键长平均化,4N+2芳香性理论,苯环D6h构架的起因,分子的构象和共轭效应的因果关系,π-电子离域的结构效应等已经受到了广泛的质疑。其中,最引人注目的是Vollhardt等合成了中心苯环具有环己三烯几何特征的亚苯类化合物,Sta
什么是同共轭效应?
又称p轨道与p轨道的σ型重叠。甲基以上的烷基,除有超共轭效应外,还可能产生同共轭效应。所有同共轭效应,原是指β碳原子上的C-H键与邻近的π键间的相互作用。大量的化学活性和电子光谱的数据表明,在丙烯基离子和类似的烯羰基中,存在一种特殊的p-π或π-π共轭现象,即所谓同共轭效应: 在丙烯基离子中是
共轭二烯烃的应用
以丁二烯和异戊二烯为代表的碳四及碳五馏分用途越来越广泛。丁二烯是C4馏分中最重要的组分之一,在石油化工烯烃原料中的地位仅次于乙烯和丙烯。C5馏分中最具有利用价值的是异戊二烯、间戊二烯、和环戊二烯三种共轭二烯烃,其中异戊二烯是主要产品之一。作为典型的共轭二烯烃,丁二烯和异戊二烯是合成橡胶的主要原料单体
共轭双键的概念
共轭双键体系即双键和单键交替的分子结构产生共轭效应。共轭效应的特点是化学键的极化作用可以沿共轭体系传递得很远。例如:共轭的结果是电子的离域,共轭体系内单键变短而双键变长,单双键长度差别缩小乃至消失。这样的体系比较稳定。如苯分子中六个碳-碳都是1.39A,而普通的碳-碳双键的键长为1.34A,碳-碳单
关于共轭亚油酸的简介
共轭亚油酸(Conjugated linoleic acid,以下简称CLA)是亚油酸的所有立体和位置异构体混合物的总称,可以看作是亚油酸的次生衍生物,分子式为C17H31COOH。共轭亚油酸的双键可位于7和9,8和10,9和11,10和12,11和13,12和14位置上,其中每个双键又有顺式(
共轭碱单分子消除反应
反应物先与碱作用,失去β氢原子,生成反应物的共轭碱碳负离子,然后从这个碳负离子失去离去基团并生成π键。在生成π键的步骤中只有共轭碱碳负离子参加。 共轭碱单分子消除反应(E1CB)也分两步进行,反应速率不仅与反应物浓度成正比,也与碱的浓度有关,其关系较复杂,在多数情况下也成正比。一般说来,只有β碳原子
共轭双键的反应概念
含活泼双键的化合物(亲双烯体)与含共轭双键的化合物(双烯体)之间发生1,4-加成生成六元环状化合物的反应,称为Diels-Alder反应,也称双烯合成 。反应过程(以1,3-丁二烯与乙烯间的反应为例)此反应为经环状过渡态进行的周环反应,反应过程中旧键断裂与新键形成协同进行。其反应机理以1,3-丁二烯
共轭体系的基本特点
在共轭体系中,虽然各原子间电子云密度不完全相同,但由于电子离域,使得单双键的差别减小,键长有趋于平均化的倾向。共轭体系越长,单双键差别越小。另外,由于电子离域作用,共轭体系能量降低,因而共轭体系比非共轭体系更加稳定。这可以从它们的氢化热的数据得到证明。CH3CH=CHCH=CH2+2H2 ——> C
共轭亚油酸的基本简介
共轭亚油酸(Conjugated linoleic acid,以下简称CLA)是亚油酸的所有立体和位置异构体混合物的总称,可以看作是亚油酸的次生衍生物,分子式为C17H31COOH。共轭亚油酸的双键可位于7和9,8和10,9和11,10和12,11和13,12和14位置上,其中每个双键又有顺式(ci
简述共轭体系的特点
在共轭体系中,虽然各原子间电子云密度不完全相同,但由于电子离域,使得单双键的差别减小,键长有趋于平均化的倾向。共轭体系越长,单双键差别越小。另外,由于电子离域作用,共轭体系能量降低,因而共轭体系比非共轭体系更加稳定。这可以从它们的氢化热的数据得到证明。 CH3CH=CHCH=CH2+2H2 —
关于共轭双键的概述
共轭双键体系即双键和单键交替的分子结构产生共轭效应。共轭效应的特点是化学键的极化作用可以沿共轭体系传递得很远。例如:共轭的结果是电子的离域,共轭体系内单键变短而双键变长,单双键长度差别缩小乃至消失。这样的体系比较稳定。如苯分子中六个碳-碳都是1.39A,而普通的碳-碳双键的键长为1.34A,碳-
关于共轭双键的简介
在有机化合物分子结构中单键与双键相间的情况称为共轭双键。有机化合物分子结构中由一个单键隔开的两个双键。以C=C-C=C表示。 含有共轭双键的分子比含孤立双键的分子较为稳定,能量较小,共轭双键中单键与双键的键长趋于平均化。