“光电融合超分辨生物显微成像系统”通过验收
2016年6月21日,国家重大科研仪器研制项目(部门推荐)“光电融合超分辨生物显微成像系统”现场验收会在北京召开。国家自然科学基金委员会(以下简称基金委)副主任沈岩院士出席会议并讲话。基金委计划局局长王长锐、生命科学部常务副主任杜生明研究员、生命科学部副主任冯雪莲研究员、财务局副局长郝观玮及计划局、财务局和生命科学部相关工作人员参加会议。现场验收会议由杜生明研究员主持并担任项目管理工作组长。 根据《国家重大科研仪器设备研制专项实施管理工作细则》和《国家重大科研仪器研制项目验收工作方案(试行)》要求,本次现场验收考核专家组由重大科研仪器专项专家委员会委员、科学部专家咨询委员会委员、管理工作组专家、科技财务评审专家及相关专业同行专家等共13位专家组成,分为仪器测试专家小组、技术文件档案专家小组和财务验收专家组,分别由北京大学程和平院士和中国科学院力学研究所龙勉研究员担任组长。 会上,验收专家组分别听取了项......阅读全文
“光电融合超分辨生物显微成像系统”获验收
近日,国家重大科研仪器研制项目(部门推荐)“光电融合超分辨生物显微成像系统”现场验收会在北京召开。基金委副主任沈岩院士出席会议并发表讲话。 根据《国家重大科研仪器设备研制专项实施管理工作细则》和《国家重大科研仪器研制项目验收工作方案(试行)》要求,本次现场验收考核专家组由重大科研仪器专项专家委
“光电融合超分辨生物显微成像系统”通过验收
2016年6月21日,国家重大科研仪器研制项目(部门推荐)“光电融合超分辨生物显微成像系统”现场验收会在北京召开。国家自然科学基金委员会(以下简称基金委)副主任沈岩院士出席会议并讲话。基金委计划局局长王长锐、生命科学部常务副主任杜生明研究员、生命科学部副主任冯雪莲研究员、财务
前沿显微成像技术专题——超分辨显微成像(1)
从16世纪末开始,科学家们就一直使用光学显微镜探索复杂的微观生物世界。然而,传统的光学显微由于光学衍射极限的限制,横向分辨率止步于 200 nm左右,轴向分辨率止步于500 nm,无法对更小的生物分子和结构进行观察。突破光学衍射极限,一直是科学家们梦想和追求的目标。虽然随着扫描电镜、扫描隧道显微镜及
前沿显微成像技术专题——超分辨显微成像(2)
上一期我们为大家介绍了几种主要的单分子定位超分辨显微成像技术,还留下了一些问题,比如它的分辨率是由什么决定的?获得的大量图像数据如何进行重构?本期我们就来为大家解答这些问题。单分子定位超分辨显微成像的分辨率单分子定位超分辨显微成像的分辨率主要由两个因素决定:定位精度和分子密度。定位精度是目标分子在横
光学超分辨显微成像重大突破!分辨率提高到100纳米以下
近日,哈尔滨工业大学仪器学院现代显微仪器研究所在光学超分辨显微成像技术领域取得突破性进展。研究团队在低光毒性条件下,把结构光显微镜的分辨率从110纳米提高到60纳米,实现了长时程、超快速、活细胞超分辨成像。11月16日,研究成果以《稀疏解卷积增强活细胞超分辨荧光显微镜的分辨率》(Sparse d
生物物理所获批国家重大科研仪器设备研制专项
据国家自然科学基金委消息,由中科院生物物理所所长徐涛研究员主持申报并担任负责人的“光电融合超分辨生物显微成像系统”项目经开题论证、实施方案审核、现场考察、答辩评审、预算评估和综合决策等多阶段评审,成功获得批准立项,并获批基金委国家重大科研仪器设备研制专项的资助。这是基金委所资助的生命科学领域唯一
暗场显微结合微球-实现微结构超分辨显微成像
在光学成像领域中,由于受到衍射极限的限制,常规成像分辨率难以突破200nm。生物医学、集成电路等领域对提高成像分辨率有迫切要求,如何实现更高成像分辨率成为近年来的热门研究方向之一。 受自然界微滴可提高成像分辨率的启发,2011年科学家提出将直径在微米级的介质微球直接放置于待测样品表面,在普通白
哈工大突破高通量超分辨显微成像难题
近日,哈尔滨工业大学仪器学院青年教授李浩宇团队在生物医学超分辨显微成像技术领域取得突破性进展。针对目前超分辨显微镜所面临的成像通量限制,团队提出基于计算光学成像的新一代高通量三维动态超分辨率成像方法,通过计算成像技术增强荧光涨落探测灵敏度,使探测灵敏度提升两个数量级以上,突破了现有显微成像技术在
超分辨光学显微成像技术的新进展
从17世纪开始,现代生物学的发展就与显微成像技术紧密相关。然而,由于受光学衍射极限的影响,传统光学显微成像分辨率最小约为入射光波长的一半。因此,科学家们一直在不断努力,试图寻找突破光学显微镜分辨极限的方法。在超分辨显微技术飞速发展的同时,现有成像技术的缺陷也日益显现,例如成像分辨率和成像时间不可兼得
超分辨荧光显微成像技术的基本原理
这个问题的答案比较简单:因为组成视网膜的每一个感光细胞(视杆细胞和视锥细胞)、相机芯片上的每一个感光元件(CCD、CMOS等)都是有大小的。比如视网膜中央凹区域的视锥细胞直径平均约为 5 微米。而由于奈奎斯特-香农采样定理的限制,视网膜上能分清的两个相邻像点的距离是视锥细胞直径的两倍,即 10 微米
超分辨荧光显微成像技术的基本原理
这个问题的答案比较简单:因为组成视网膜的每一个感光细胞(视杆细胞和视锥细胞)、相机芯片上的每一个感光元件(CCD、CMOS等)都是有大小的。比如视网膜中央凹区域的视锥细胞直径平均约为 5 微米。而由于奈奎斯特-香农采样定理的限制,视网膜上能分清的两个相邻像点的距离是视锥细胞直径的两倍,即 10 微米
超分辨荧光显微成像技术的基本原理
这个问题的答案比较简单:因为组成视网膜的每一个感光细胞(视杆细胞和视锥细胞)、相机芯片上的每一个感光元件(CCD、CMOS等)都是有大小的。比如视网膜中央凹区域的视锥细胞直径平均约为 5 微米。而由于奈奎斯特-香农采样定理的限制,视网膜上能分清的两个相邻像点的距离是视锥细胞直径的两倍,即 10 微米
中科大重大突破!单离子超分辨成像将实现
我校郭光灿院士团队在冷原子超分辨成像研究中取得重要进展。该团队李传锋、黄运锋、崔金明等人在离子阱系统中实现了单个离子的超分辨成像,该成果12月23日发表在国际知名期刊《物理评论快报》上。 冷原子系统,包括离子阱中囚禁的离子和光场中囚禁的原子等,是研究量子物理的理想实验平台,也是进行量子模拟
科学家开发出深度学习超分辨显微成像方法
1月21日,中国科学院生物物理所、广州生物岛实验室研究员李栋课题组,与清华大学自动化系、脑与认知科学研究院教授戴琼海课题组,在Nature Methods上以长文(Article)形式发表了题为Evaluation and development of deep neural net
Nature-Methods:新型光片超分辨显微成像实现精细观测
华中科技大学课题组3月12日在Nature Methods在线发表研究论文,提出了一种基于深度学习的超分辨荧光显微镜,实现对活细胞的精细动态和相互作用进行快速、三维、长时程地观测。 细胞的稳态离不开内部多种亚细胞结构的精确分工和协同合作,洞悉细胞内细胞器/蛋白分子的精密运转是一项重要的生命科学
量子增强的超分辨显微成像机制新进展
中国科学院上海高等研究院王中阳课题组提出新型的基于荧光量子相干的超分辨显微成像方法,研究成果以Breaking the diffraction limit using fluorescence quantum coherence为题,近日发表在 《光学快报》(Optics Express)上。
突破:4Pi超分辨显微成像技术的“禁地”破除
由于具有无损、高特异性等特点,光学荧光显微镜一直是生物实验室进行研究的必备之选。相较于二维成像,三维超分辨显微成像技术在生物研究中具有显著的优势。由于光学衍射效应(Diffraction Effect),经典的单镜头显微镜系统在轴向(厚度方向)的分辨率表现不佳——即使是新兴的超分辨显微成像技术也
科学家开发出深度学习超分辨显微成像方法
1月21日,中国科学院生物物理所、广州生物岛实验室研究员李栋课题组,与清华大学自动化系、脑与认知科学研究院教授戴琼海课题组,在Nature Methods上以长文(Article)形式发表了题为Evaluation and development of deep neural networks
超分辨显微技术浅析
光学显微成像的衍射极限 生物医学成像技术是基础生物学研究和临床医学最重要的工具之一。回顾历史,已有多位科学家凭借在成像技术方面的突破获得诺贝尔奖。其中,Roentgen 因发现 X 射线获得 1901 年诺贝尔物理学奖; Zernike 因发明相衬显微镜获得 1953 年诺贝尔
超分辨显微技术浅析
光学显微成像的衍射极限生物医学成像技术是基础生物学研究和临床医学最重要的工具之一。回顾历史,已有多位科学家凭借在成像技术方面的突破获得诺贝尔奖。其中,Roentgen 因发现 X 射线获得 1901 年诺贝尔物理学奖; Zernike 因发明相衬显微镜获得 1953 年诺贝尔物理学奖; Ruska
超分辨率显微镜实现自由运动神经环路高分辨成像
提到在体小动物神经成像,人们自然会联想到钙离子荧光探针局部注射或遗传钙指示剂(如Gcamp家族)结合双/三光子显微镜的经典在体成像组合。 随着基因改造技术的突飞猛进,通过病毒转染和转基因技术,在神经元内源性表达“基因编码类钙指示剂(genetically encoded calcium ind
多高校合作在超分辨显微成像方面取得新进展
在国家自然科学基金项目(批准号:61475010, 61729501, 61327902)等资助下,北京大学工学院席鹏研究员团队与清华大学自动化系戴琼海院士团队、北京大学麦戈文脑科学研究所张研教授团队、中国科学院动物研究所李向东研究员团队、北京大学生命科学学院陈晓伟研究员团队、以及澳大利亚悉尼科
深圳先进院等在超分辨光学显微成像方面取得进展
近日,中国科学院深圳先进技术研究院研究员郑炜与美国国立卫生研究院教授 Hari Shroff 合作,成功研发出新型双光子激发的超分辨光学显微成像系统,该系统同时具备超分辨光学显微成像功能和大深度三维成像能力,使光学超分辨成像深度推进至破纪录的 250 微米,相应研究成果 Adaptive opt
多色超分辨结构光照明显微鬼成像研究取得进展
近期,中国科学院上海光学精密机械研究所研究员韩申生、副研究员刘震涛团队在多色超分辨结构光照明显微鬼成像方面取得进展。相关研究成果以Multicolor super-resolution structured illumination microscopy based on snapshot spec
多色超分辨结构光照明显微鬼成像研究取得进展
近期,中国科学院上海光学精密机械研究所研究员韩申生、副研究员刘震涛团队在多色超分辨结构光照明显微鬼成像方面取得进展。相关研究成果以Multicolor super-resolution structured illumination microscopy based on snapshot spec
超分辨率显微镜成像助力学者探询神经回路
来自哈佛大学的研究人员报告称,她们采用超高分辨率成像绘制出了神经元突触输入区的图谱。这一重要的研究成果发布在10月8日的《细胞》(Cell)杂志上。 论文的通讯作者是著名的华人女科学家庄小威(Xiaowei Zhuang)。庄小威早年毕业于中国科技大学少年班,34岁时成为了哈佛大学的化学和物理双
重大科研突破需科研仪器先行
伟大的科研突破几乎从未离开过先进精密的实验仪器的“陪伴”,“大科学”时代的开启也伴随着精密仪器的“横空出世”。在中国科学院大学近日举行的中国科学与人文论坛报告会上,中国科学院物理所研究员、北京凝聚态物理国家实验室首席科学家丁洪阐释了精密科研仪器对于科学研究不可替代之“重”。
高速图像重建助力实时超分辨成像
JSFR-SIM算法和传统Wiener-SIM算法的重建流程对比示意图。 JSFR-SIM可实时显示微管和线粒体动态。 高速实时超分辨结构光照明显微成像光路(a)和快速实时超分辨结构光照明显微成像系统样机(b)。图片来源:论文作者 超分辨荧光显微成像技术打破
高速图像重建助力实时超分辨成像
JSFR-SIM算法和传统Wiener-SIM算法的重建流程对比示意图。 JSFR-SIM可实时显示微管和线粒体动态。 高速实时超分辨结构光照明显微成像光路(a)和快速实时超
重大科研仪器研制项目“太赫兹超导阵列成像系统”-验收
6月30日,中国科学院紫金山天文台承担的国家重大科研仪器研制项目(部门推荐)“太赫兹超导阵列成像系统”结题验收会在南京召开。国家自然科学基金委员会相关负责人、中科院条件保障与财务局相关负责人、项目验收专家组、项目监理组、财务验收组、紫金山天文台相关负责人、项目组全体成员等50余人参加了验收会。验