超分辨荧光显微成像技术的基本原理

这个问题的答案比较简单:因为组成视网膜的每一个感光细胞(视杆细胞和视锥细胞)、相机芯片上的每一个感光元件(CCD、CMOS等)都是有大小的。比如视网膜中央凹区域的视锥细胞直径平均约为 5 微米。而由于奈奎斯特-香农采样定理的限制,视网膜上能分清的两个相邻像点的距离是视锥细胞直径的两倍,即 10 微米。再结合眼球的构造,大致可以推断出,在距离眼睛 25 厘米的位置,我们能分辨物体上相距为 80 微米的两个点,换算成点阵密度就是大约 320 ppi,这也是苹果所谓“视网膜屏”分辨率的来历。如果要观察小于 80 微米的物体,比如细菌,就需要先将物体放大,再用眼睛或者相机观察。现代光学显微镜的构造其实非常简单,样品放置在物镜的焦点处,从样品上发射或散射的光经过物镜变成平行(准直)光,再经过一个结像透镜,然后会聚到相机的感光芯片上成像。按照前面的方法来推算,要区分物体上相距为 200 纳米的两个点,如果使用科研级相机,比如最近火起来的 s......阅读全文

超快时间分辨荧光光谱仪

  超快时间分辨荧光光谱仪是一种用于化学领域的分析仪器,于2015年12月24日启用。  技术指标  1.范围:荧光测试波长范围230-850nm;950~1700nm;荧光寿命范围25ps-10s2.光源:,DeltaDiode-C1脉冲光源控制器(软件控制)高频脉冲光源DeltaDiode-28

超分辨率荧光显微技术的意义

利用超高分辨率显微镜,可以让科学家们在分子水平上对活体细胞进行研究,如观察活细胞内生物大分子与细胞器微小结构以及细胞功能如何在分子水平表达及编码,对于理解生命过程和疾病发生机理具有重要意义。

超分辨荧光蛋白开发研究获进展

  绿色荧光蛋白(GFP)的发明因其能够提供对于活细胞和活体动物的靶向基因修饰标记而获得2008年诺贝尔化学奖。进一步,由基因改造的光激活荧光蛋白(PA-FP)能够提供单分子特性,而实现了超分辨显微,使得这一技术获得2014年诺贝尔化学奖。随后,超分辨的发展向着活细胞动态超高时空分辨率显微迈进。其中

超分辨率荧光显微技术的技术获奖

2014年10月8日,2014年度诺贝尔化学奖揭晓,美国科学家埃里克·白兹格、威廉姆·艾斯科·莫尔纳尔和德国科学家斯特凡·W·赫尔三人获得。官方称,该奖是为表彰他们在超分辨率荧光显微技术领域取得的成就 。

季铵哌嗪如何实现荧光超分辨率成像?

  近年来,先进的荧光成像技术得到了快速的发展,但是与成像技术的治疗进化相比,具有足够亮度和光稳定性的染料的发展仍然缓慢,如单分子定位显微镜(SMLM),其分辨率超过了衍射极限。但是荧光团亮度不足成为了超分辨显微镜发展的一大瓶颈,这也对体内细胞动力学研究构成了重要的限制。比如罗丹明染料被广泛应用,但

超分辨荧光显微成像技术的基本原理

这个问题的答案比较简单:因为组成视网膜的每一个感光细胞(视杆细胞和视锥细胞)、相机芯片上的每一个感光元件(CCD、CMOS等)都是有大小的。比如视网膜中央凹区域的视锥细胞直径平均约为 5 微米。而由于奈奎斯特-香农采样定理的限制,视网膜上能分清的两个相邻像点的距离是视锥细胞直径的两倍,即 10 微米

超分辨荧光显微成像技术的基本原理

这个问题的答案比较简单:因为组成视网膜的每一个感光细胞(视杆细胞和视锥细胞)、相机芯片上的每一个感光元件(CCD、CMOS等)都是有大小的。比如视网膜中央凹区域的视锥细胞直径平均约为 5 微米。而由于奈奎斯特-香农采样定理的限制,视网膜上能分清的两个相邻像点的距离是视锥细胞直径的两倍,即 10 微米

超分辨荧光显微成像技术的基本原理

这个问题的答案比较简单:因为组成视网膜的每一个感光细胞(视杆细胞和视锥细胞)、相机芯片上的每一个感光元件(CCD、CMOS等)都是有大小的。比如视网膜中央凹区域的视锥细胞直径平均约为 5 微米。而由于奈奎斯特-香农采样定理的限制,视网膜上能分清的两个相邻像点的距离是视锥细胞直径的两倍,即 10 微米

计算超分辨图像重建算法拓展荧光显微镜分辨率极限

  自2014年诺贝尔化学奖授予了超分辨显微技术以来,超分辨成像技术取得了巨大的进步,成像的分辨率得到了进一步的提高。然而受限于荧光分子单位时间内发出的光子数,超分辨成像技术在时间分辨率和空间分辨率上难于获得同等提高。  近日,发表在《Nature Biotechnology》上的一项题为“Spar

计算超分辨图像重建算法拓展荧光显微镜分辨率极限

  自2014年诺贝尔化学奖授予了超分辨显微技术以来,超分辨成像技术取得了巨大的进步,成像的分辨率得到了进一步的提高。然而受限于荧光分子单位时间内发出的光子数,超分辨成像技术在时间分辨率和空间分辨率上难于获得同等提高。  近日,发表在《Nature Biotechnology》上的一项题为“Spar

新一代Nanoimager可轻松实现超分辨荧光成像

近年来,随着活细胞体系单分子荧光成像技术的发展,膜蛋白单分子研究,特别是受体动力学的研究,已成为目前单分子研究领域中最活跃的研究方向之一。近几年发展起来的超分辨成像技术因其能够突破光学衍射极限,而比传统光学显微镜具有更高的分辨率和更高的定位精度。英国Oxford Nanoimaging公司最新推

发明计算超分辨图像重建算法拓展荧光显微镜分辨率极限

  自2014年诺贝尔化学奖授予了超分辨显微技术以来,超分辨成像技术取得了巨大的进步,成像的分辨率得到了进一步的提高。然而受限于荧光分子单位时间内发出的光子数,超分辨成像技术在时间分辨率和空间分辨率上难于获得同等提高。  近日,发表在《Nature Biotechnology》上的一项题为“Spar

超分辨荧光显微镜和普通荧光显微镜的区别

  两者在工作原理及应用方面存在不同。分述如下:  一、荧光显微镜  1、荧光显微镜是以紫外线为光源, 用以照射被检物体, 使之发出荧光, 然后在显微镜下观察物体的形状及其所在位置。荧光显微镜用于研究细胞内物质的吸收、运输、化学物质的分布及定位等。 细胞中有些物质,如叶绿素等,受紫外线照射后可发荧光

光控荧光染料的超分辨成像研究获新进展

  近日,华东理工大学费林加诺贝尔奖科学家联合研究中心与中科院上海药物研究所、国家蛋白质中心、美国得克萨斯大学奥斯丁分校以及英国巴斯大学合作,在酶激活型光控荧光染料的超分辨成像研究中取得重要进展,研究成果以“光致变色荧光探针策略实现生物标志物超分辨成像”为题发表于《美国化学会志》。 酶是人体不可

山西大学最新文章;新型超分辨率荧光成像

  来自山西大学激光光谱研究所, 量子光学与光量子器件国家重点实验室的研究人员将荧光探针分子ALEXA647标记在仿生水凝胶的聚合物链上, 利用全内反射荧光显微镜进行荧光成像, 并采用超分辨率光学波动成像的方法(SOFI)对仿生水凝胶的荧光成像进行超分辨率成像分析。 通过SOFI成像及反卷积处理获得

新型超分辨显微镜测试荧光片特性与应用简介

介绍一种最新的超分辨显微镜测试荧光片  近年来,超高分辨率显微镜SIM,STED,dstorm显微镜越来越普及,高端荧光显微系统由于其高分辨,高灵敏度的特点,成像系统的校准显得尤为重要。最近德国GATTA公司发布了新的标准荧光样品片,KOSTER & GATTA 细胞系列标准荧光片。 此系列标准

硬核!大连化物所指导开发超分辨成像自闪荧光染料

  近日,大连化物所分子探针与荧光成像研究组(1818组)徐兆超研究员团队与新加坡科技设计大学刘晓刚教授团队合作,发现罗丹明染料开关环物种稳态下的吉布斯自由能的差值(ΔGC-O)同开环比例具有优异的线性关系(R2=0.965)。此线性关系可以定量地指导设计特定开环比例的罗丹明染料。  单分子定位超分

超分辨显微技术浅析

光学显微成像的衍射极限 生物医学成像技术是基础生物学研究和临床医学最重要的工具之一。回顾历史,已有多位科学家凭借在成像技术方面的突破获得诺贝尔奖。其中,Roentgen 因发现 X 射线获得 1901 年诺贝尔物理学奖; Zernike 因发明相衬显微镜获得 1953 年诺贝尔

超分辨显微技术浅析

光学显微成像的衍射极限生物医学成像技术是基础生物学研究和临床医学最重要的工具之一。回顾历史,已有多位科学家凭借在成像技术方面的突破获得诺贝尔奖。其中,Roentgen 因发现 X 射线获得 1901 年诺贝尔物理学奖; Zernike 因发明相衬显微镜获得 1953 年诺贝尔物理学奖; Ruska

时间分辨荧光分析

由于不同分子的荧光寿命不同,可在激发与检测之间延缓一段时间,使具有不同荧光寿命的物质得以分别检测,即时间分辨荧光分析。采用带时间延迟设备的脉冲光源和带有门控时间电路的检测器件,可以在固定延迟时间后和门控宽度内得到时间分辨荧光光谱。选择合适的延迟时间,可以把待测组分的荧光和其他组分或杂质的荧光以及仪器

布鲁克推出Vutara352超分辨率荧光显微镜

  分析测试百科网讯 2015年12月14日,布鲁克在2015细胞生物学ASCB年会上推出首款用于定量分析的超分辨率荧光显微镜Vutara352。Vutara352不仅在速度、成像深度和分辨率等方面具有优势,还加入了实时定量能力。这款产品拥有许多新功能,包括执行偶关联、协同定位、群集分析、活细胞分析

超分辨率显微镜分析在荧光抗体筛选的应用

1873年,德国医师Ernst Abbe 提出了“衍射极限”的概念。他预测,由于光的基本衍射性质,光学显微镜无法实现200nm以下的分辨率。实际上,当两个相隔很近的物点同时发光时,得到的图像是模糊的,无法分辨。超分辨率显微镜(SRM)的诞生打破了一个世纪多以来一直被认为无法突破的瓶颈。 如今,科

解读2014Nobel化学奖:超分辨率荧光显微技术

【摘要】2014年诺贝尔化学奖授予Eric Betzig,Stefan W. Hell和William E. Moerner3位科学家,以表彰他们在超分辨率荧光显微成像技术方面的重大贡献。本文从显微镜分辨率的起因入手,对超分辨荧光显微技术进行了深入阐述。此外,对光学显微技术的发展前景进行展望。201

荧光剂面膜怎么分辨

眼睛好使的,直接关灯,在暗处看色辨别,含过量荧光粉面膜会呈现出绿色或蓝色光;有验钞灯就更方便了,荧光粉在紫光照射下会明显反光。荧光剂进入体内会产生有害物质记者查询发现,国内对化妆品中的荧光增白剂的使用,没有禁用添加,也没有限制添加。此前,有美容医学专家表示,荧光增白剂在很多产品里都有,一般都是在膏霜

时间分辨荧光免疫技术

第一部份:时间分辨的原理、我国乙肝两对半的流行情况及时间分辨在乙肝两 对半上 的应用技术一、时间分辨荧光分析( Time-resolved Fluorescence Immunoassay TRFIA )的基本原理。  TRFIA 是用三价稀土离子及其螯合剂作为示踪物,如 铕 ( Eu3+ )、 铽

时间分辨荧光技术原理

荧光和均相性分析理论上,荧光是最灵敏的检测手段。由于许多分子间和分子内的变化会改变标记物的荧光发射。因此,很早就把它作为均相分析技术可能的新的手段。偏振,淬灭,时间关联,荧光寿命改变以及荧光共振能量转移( FRET)已经被广泛应用在对分子间作用的研究中 1-5 。然而,在这些应用中,一些技术条件严重

时间分辨荧光免疫技术

第一部份:时间分辨的原理、我国乙肝两对半的流行情况及时间分辨在乙肝两 对半上 的应用技术 一、时间分辨荧光分析( Time-resolved Fluorescence Immunoassay TRFIA )的基本原理。   TRFIA 是用三价稀土离子及其螯合剂作为示踪物,如 铕 ( Eu3+ )

时间分辨荧光免疫技术

第一部份:时间分辨的原理、我国乙肝两对半的流行情况及时间分辨在乙肝两 对半上 的应用技术一、时间分辨荧光分析( Time-resolved Fluorescence Immunoassay TRFIA )的基本原理。  TRFIA 是用三价稀土离子及其螯合剂作为示踪物,如 铕 ( Eu3+ )、

时间分辨荧光技术原理

时间分辨荧光免疫测定(TRFIA)是一种非同位素免疫分析技术,它用镧系元素标记抗原或抗体,根据镧系元素螯合物的发光特点,用时间分辨技术测量荧光,同时检测波长和时间两个参数进行信号分辨,可有效地排除非特异荧光的干扰,极大地提高了分析灵敏度。  (一)TRFIA分析原理  在生物流体和血清中的许多复合物

光致开关荧光探针用于微管蛋白的原位检测和超分辨成像

微管蛋白一直被认为是潜在癌症化疗的靶点。许多临床数据表明:跟踪微管蛋白的变化将有助于对癌症治疗。传统的宽场光学显微镜的显微分辨率受到衍射极限的限制,无法获得细胞内的精细结构信息,大大降低了对微管蛋白类分子的观察能力。远场超分辨成像方法是近些年发展起来的利用荧光分子在纳米级分辨率下对生物体内的相关物质