深圳先进院等实现超薄硒化铋二维材料的液相制备

近日,中国科学院深圳先进技术研究院研究员喻学锋课题组与武汉大学教授王取泉、香港城市大学教授朱剑豪合作,由课题组成员谢寒寒等成功制备出超薄硒化铋二维层状材料,并应用于光声成像引导的光热治疗。相关论文Metabolizable Ultrathin Bi2Se3 Nanosheets in Imaging-Guided Photothermal Therapy 已被纳米期刊Small (DOI: 10.1002/smll.201601050) 作为封面报道(Back Cover)。 近年来,石墨烯等二维层状材料因其独特的性能和广阔的应用前景引起人们越来越多的关注。作为二维层状材料的一种,硒化铋(Bi2Se3)具有显著的热电和光电性能,同时具有良好的生物活性和生物相容性,引起了科学家们的极大兴趣。粒度对于二维层状材料的功能优化至关重要,几个原子层厚度的二维材料往往具有很好的电学和光学特性。同时在生物医学应用中,粒度不仅影响细胞摄取......阅读全文

深圳先进院等实现超薄硒化铋二维材料的液相制备

  近日,中国科学院深圳先进技术研究院研究员喻学锋课题组与武汉大学教授王取泉、香港城市大学教授朱剑豪合作,由课题组成员谢寒寒等成功制备出超薄硒化铋二维层状材料,并应用于光声成像引导的光热治疗。相关论文Metabolizable Ultrathin Bi2Se3 Nanosheets in Imagi

深圳先进院二维材料肿瘤靶向放疗研究获进展

  近日,中国科学院深圳先进技术研究院研究员喻学锋课题组与暨南大学教授陈填烽等合作,设计合成了一种二维片状结构的靶向纳米体系,实现了肿瘤靶向放射治疗。相关研究成果以Decorated ultrathin bismuth selenide nanosheets as targeted theranos

喻学锋课题组建立肿瘤活性磷疗新技术

  近日,中国科学院深圳先进技术研究院研究员喻学锋课题组在开发天然生物活性纳米化疗药物领域取得新进展。相关工作"Bioactive phospho-therapy with black phosphorus for in vivo tumor suppression"(《基于黑磷的活性磷疗抑制肿瘤生

清华李艳梅中科院深圳先进院喻学锋Biomaterials

  黑磷纳米片作为免疫增强纳米佐剂及其近红外光促进的免疫治疗  【引言】肿瘤免疫治疗利用患者的免疫系统杀伤或根除肿瘤,是克服癌症转移和复发的重要临床手段。作为近年来快速发展的一种主动型疗法,治疗性癌症疫苗通过整合抗原和免疫佐剂,有望增强抗原免疫原性,并协调先天和适应性免疫系统产生肿瘤特异性应答。利用

李红昌/喻学锋/李洋合作利用黑磷纳米材料靶向PLK1激酶

  多年来,纳米技术一直被视为一门拥有无限潜力的科学,并已经被广泛应用于材料与制造、电子与信息技术、能源与环境、以及医学与健康领域。伴随着纳米科学技术在各行各业的普遍应用,理解纳米生物效应与安全性变得愈加重要,但相关研究却始终处于早期阶段。由于纳米材料的大小与生物大分子非常接近,因此普遍认为纳米材料

溶液操作工艺制备的高性能柔性硒化亚铜热电薄膜

  热电效应是由温差产生电压的直接能量转换现象,这一基本原理于十九世纪初发现,而大规模的温差电实用技术研究始于二十世纪中叶,其中最成功的应用是在航天器上实现了长时可靠的发电。温差发电性能可靠、维修少、低噪音,可在极端恶劣的环境下长时间工作。近几年来,温差发电机在军事高科技以及民用方面都表现出良好的应

碲化铋的应用和制备方法

应用用于半导体、电子冷冻和发电,碲化铋及其固溶体是研究的最早并且也是研究的最成熟的一种热电材料。晶体制备碲化铋块体材料可以用来加工成各种常用的器件,比较Chemicalbook常用的制备方法有:区熔法、布里奇曼法(Bridgeman)、单晶提拉法、等离子活化烧结法和热压烧结法,制备单晶材料常使用区熔

什么是制备液相

简单的说就是分析液相的扩大化,不过在扩大的同时很多条件都有可能发生变化,具体样品具体分析呵

制备型液相色谱

  制备型液相色谱是一种用于生物学、化学工程领域的物理性能测试仪器,于2017年10月20日启用。  技术指标  1.流量范围:0.001-3200 ml/min 2.泵头最高耐压:8700 psi 3.紫外-可见检测器波长范围:190-700 nm 4.紫外-可见检测器噪音:+5x10-6 AU。

什么是制备液相

简单的说就是分析液相的扩大化,不过在扩大的同时很多条件都有可能发生变化,具体样品具体分析呵

什么是制备液相

其实制备液相,就是分析液相的简单放大,简单是这么说的,但是制备液相的目的是分离提纯纯物质,整套设备有泵,检测器和上位机,自动馏分收集器等一些配件

制备液相压力波动

5bar=0.5MPa,这个压力波动范围算是比较平稳的了。一般波动范围在10bar以上才叫做大。安捷伦有压力的在线监控,你可以看看波动曲线。这个波动打不打主要取决于你正常运行时的压力。如果你运行的时候,压力在50bar以下,那么这个波动可能算是稍微有点儿大,如果你的运行压力在50bar以上,这个波动

循环制备液相色谱

液相色谱为什么要采用循环技术?   色谱分离过程的分离效率主要取决于色谱柱的长度。常规的办法是增加色谱柱的长度,但因为系统压降升高、色谱柱填料昂贵、空间受限等因素使得这种方法不可行。而采用循环技术则可以克服以上缺陷,提高色谱分离过程的分离效率。     什么是循环制备液相色谱? 循环液相色谱技术的关

反相液相色谱与正相液相色谱分析时,出锋顺序如何

常见物质官能团的极性顺序:烷基〈卤素〈(F〈 Cl〈 Br〈 I )〈醚〈硝基〈睛〈叔胺〈酯〈酮〈醛〈醇〈酚〈伯胺〈酰胺〈羧酸〈磺酸。在反相液相色谱法中,物质极性强的先出峰,极性弱的后出峰,在正相色谱中相反,物质极性强的后出峰,极性弱的先出峰。

碲化铋的晶体制备和应用

应用用于半导体、电子冷冻和发电,碲化铋及其固溶体是研究的最早并且也是研究的最成熟的一种热电材料。晶体制备碲化铋块体材料可以用来加工成各种常用的器件,比较Chemicalbook常用的制备方法有:区熔法、布里奇曼法(Bridgeman)、单晶提拉法、等离子活化烧结法和热压烧结法,制备单晶材料常使用区熔

什么是制备与半制备液相

制备与半制备主要是指待制备样品的量来区别,1克以上是制备级别,100毫克到1克之间是半制备级别

液相色谱的流动相怎么制备

照着要求制备呀,一般都给了流动相要求,照着配就行了,配置完要用0.45的膜虑过,再脱气,方可使用。

深圳先进院构筑二维黑磷面内异质结

  近日,中国科学院深圳先进技术研究院研究员喻学锋课题组在二维黑磷领域取得新进展,通过控制钴原子在黑磷不饱和位点上的选择性沉积,制备出黑磷/磷化钴面内异质结,展现出优良的电催化活性。相关成果以In-Plane Black Phosphorus/Dicobalt Phosphide Heterostr

深圳先进院构筑二维黑磷面内异质结

  近日,中国科学院深圳先进技术研究院研究员喻学锋课题组在二维黑磷领域取得新进展,通过控制钴原子在黑磷不饱和位点上的选择性沉积,制备出黑磷/磷化钴面内异质结,展现出优良的电催化活性。相关成果以In-Plane Black Phosphorus/Dicobalt Phosphide Heterostr

制备液相和一般液相的区别

制备液相主要特点1、 比玻璃柱安全迅速,分离速度高10倍,时间少于30min,换柱只须30秒;2、 使用40mm或80mm柱子制备量大,分离纯度高,普通为0-50g;3、 成本低,流动相不需要前处理,样品可固体上样,耗品少,维修少;4、 重现性高,放大方便,可以达到公斤级;一般液相特点:1.高压:一

反相液相色谱与正相液相色谱分析时,各组分出锋顺序如何

常见物质官能团的极性顺序:烷基〈卤素〈(F〈 Cl〈 Br〈 I )〈醚〈硝基〈睛〈叔胺〈酯〈酮〈醛〈醇〈酚〈伯胺〈酰胺〈羧酸〈磺酸。在反相液相色谱法中,物质极性强的先出峰,极性弱的后出峰,在正相色谱中相反,物质极性强的后出峰,极性弱的先出峰。

制备液相的相关叙述

  制备液相是一种用于农学领域的分析仪器,于2016年1月15日启用。  技术指标  通过高灵敏度的紫外/可见光检测器或PDA检测器对目标化合物进行鉴别与分离,改善线性范围以适应高浓度样品;可使用内径不超过50 mm的色谱柱对从几毫克到几克不等的样品进行可靠纯化.。  主要功能  快速制备宝贵且复杂

制备型液相色谱概述

  制备型液相色谱系统是一种用于生物学、基础医学、预防医学与公共卫生学、药学领域的分析仪器,于2017年7月5日启用。  技术指标  I. 系统泵及样品泵 1.1 系统泵: 流速:0.01–150ml/min *1.1.1 装柱可以双泵模式运行,达到0.01–300ml/min 1.2 样品泵:流速

什么叫制备型液相

就是泵、柱子比较大,通过柱分离出物质,可以收集利用

浅谈制备液相色谱技术

制备液相色谱技术   液相色谱技术自发明以来,由于其高效、高灵敏度等特点,得到了飞速发展。近年来,伴随着生物技术和精细化工的发展,作为液相色谱分支的制备液相色谱也日益受到重视,成为了生物技术产品和研究中不可或缺的手段。   制备液相色谱按照一次进样量的多少,可以分为3种规模,即半制备色谱、制备色谱和

什么叫制备型液相

就是泵、柱子比较大,通过柱分离出物质,可以收集利用

Nature:合成生物学里程碑-大规模量产半合成青蒿素

非洲肯尼亚的种植青蒿的人员正在清理田地。  在获得一项突破性研究发现的12年之后,来自加州大学伯克利分校(UC Berkeley)化学工程学系的Jay Keasling看到他的梦想成为了现实。  在4月11日,赛诺菲(Sanofi)将基于Keasling研究发现,启动大规模地生产一种半合成青蒿素(a

有机硒化物连续合成

一、背景介绍 随着技术的发展,合成有机化学正在不断进步。从更简单的前体获得复杂分子的技术涉及到创造性地设计多步骤策略,重点是最小化操作步骤、节约能源和以最少的浪费提供大量产品。 如今,将创新方法与连续流动技术相结合已成为简化多步合成的一种非常有趣的方法。多步骤流动合成引进了连续分离单元以及在线分析工

有机硒化物连续合成

  一、背景介绍   随着技术的发展,合成有机化学正在不断进步。从更简单的前体获得复杂分子的技术涉及到创造性地设计多步骤策略,重点是最小化操作步骤、节约能源和以最少的浪费提供大量产品。   如今,将创新方法与连续流动技术相结合已成为简化多步合成的一种非常有趣的方法。多步骤流动合成引进