大连化物所硅基材料用于光电化学分解水研究获新进展

近日,中国科学院大连化学物理研究所催化基础国家重点实验室、洁净能源国家实验室(筹)李灿团队在硅基半导体材料用于光电化学分解水的光阳极研究中取得新进展,发现了单晶硅基光电极中的界面施主态缺陷能级是制约光电极效率的因素之一,成功对异质结的界面能带结构进行了精细调控,有效提高光电极的电荷分离及水氧化效率。相关研究结果以全文的形式发表在《美国化学会会志》上(Tingting Yao, Can Li, et al, J. Am. Chem. Soc., 2016, DOI: 10.1021/jacs.6b07188)。 太阳能催化水分解反应是未来解决能源问题和环境污染的理想途径之一。半导体基光(电)催化剂中,光生载流子被有效分离和迁移至光催化剂表面参与水分解反应,是提高光催化效率的关键。李灿团队长期致力于解决这一关键问题,相继在国际上提出了“异质结”(J. Am. Chem. Soc., 2008, DOI: 10.1021/ja8......阅读全文

大连化物所硅基材料用于光电化学分解水研究获新进展

  近日,中国科学院大连化学物理研究所催化基础国家重点实验室、洁净能源国家实验室(筹)李灿团队在硅基半导体材料用于光电化学分解水的光阳极研究中取得新进展,发现了单晶硅基光电极中的界面施主态缺陷能级是制约光电极效率的因素之一,成功对异质结的界面能带结构进行了精细调控,有效提高光电极的电荷分离及水氧化效

什么是硅基负极材料?

更高的正极比容量、更高的负极比容量和更高的电池电压(以及更少的辅助组元),是高能量密度电池的理论实现路径。正极材料的比容量相对更低,性能提升对电池(单体)作用显著;负极比容量提升对于电池能量密度提升仍有相当程度作用。硅材料的理论比容量远高于(约10倍)已逼近性能极限的石墨,有望成为高能量密度锂电池的

硅基负极材料的性能特点

更高的正极比容量、更高的负极比容量和更高的电池电压(以及更少的辅助组元),是高能量密度电池的理论实现路径。正极材料的比容量相对更低,性能提升对电池(单体)作用显著;负极比容量提升对于电池能量密度提升仍有相当程度作用。硅材料的理论比容量远高于(约10倍)已逼近性能极限的石墨,有望成为高能量密度锂电池的

特殊材料取代硅造出半导体薄膜

  美国麻省理工学院(MIT)工程师最近开发出一种新技术,他们用一批特殊材料取代硅,制造出了超薄的半导体薄膜。新技术为科学家提供了一种制造柔性电子器件的低成本方案,且得到的电子器件的性能将优于现有硅基设备,有望在未来的智慧城市中“大展拳脚”。  如今,绝大多数计算设备都由硅制成,硅是地球上含量第二丰

硅基光电子领域获重大突破

原文地址:http://news.sciencenet.cn/htmlnews/2023/10/510759.shtm

硅基近红外光电转换取得突破

  近日,中国科学院苏州纳米技术与纳米仿生研究所陈沁课题组联合东南大学的王琦龙教授紧密合作,在低成本高效硅基热电子红外光电探测器方面取得了系列进展。他们首先提出了Au纳米颗粒修饰Si金字塔结构的方案,实验证明他们制备的这些器件的性能与那些精心设计、成本高昂的Si基近红外光电探测器性能相当,有望应用在

新疆理化所硅基光电探测研究取得进展

  实现高效光电探测一直是微电子领域和材料领域研究的热点。硅基探测是众多光电探测器中最实用化的一种方法,而构筑于硅基底上的纳米材料光电探测器研究是目前科研人员高度关注的课题。多数的构筑于硅基底上的纳米结构采用的硅基底为表面热氧化的硅片,一般氧化层(SiO2层)结晶性好、漏电流小、避免影响目标纳米结构

水凝胶半导体材料问世

在最新一期《科学》上,美国芝加哥大学普利兹克分子工程学院团队展示了界面生物电子学领域的新突破:他们创造出具有强大半导体功能的新型水凝胶材料。这种新型蓝色凝胶能够在水中像海蜇一样浮动,同时还具有出色的半导体功能,可实现生物组织与机器之间的信息传输。  理想的用于连接电子组件和活体组织的材料应当是柔软、

“神奇材料”石墨烯“联姻”硅基技术

  据物理学家组织网7月10日(北京时间)报道,奥地利、德国和俄罗斯的科学家们合作研发出一种新方法,可以很好地让“神奇材料”石墨烯同现有占主流的硅基技术“联姻”,制造出在半导体设备等领域广泛运用的石墨烯-硅化物。相关研究发表在英国自然集团旗下的《科学报告》杂志上。   石墨烯是从石墨材料中剥离出来

宁波材料所纳米硅基负极材料研究取得进展

  相对于传统石墨负极材料(372mAh/g),硅负极材料具有极高的理论比容量(3580mAh/g),是未来高能量密度动力锂离子电池负极材料首选。但硅负极材料在充放电循环过程中存在体积变化(高达3倍以上),造成硅颗粒粉化,从而引发SEI膜反复再生库伦效率低,电接触变差极化增大,使实际硅负极材料循环寿

半导体所硅基光子学研究取得重要突破

  基于硅基微纳波导的硅基光子学由于可以实现超小体积、低能耗、CMOS兼容的单片高密度光电集成,已被各国公认为突破计算机和通信超大容量、超高速信息传输和处理瓶颈的最理想技术之一。   日前,中科院半导体研究所在该领域取得世界领先水平的重大技术突破。半导体所由王启明院士率先开展硅基光子学研究,近年来

半导体硅材料分选仪的使用和原理

1、测试电源,电源电压值应该在220V左右,电压偏差不得超过2%,否则影响测试定标,偏差过大甚至会损坏电路。(AC110V使用需要配备AC110V转AC220V电压转换器)2、接好测试线,测试线连接到仪器上时,务必确保仪器上插座的凸起与测试线插头的凹槽对应好,并将螺圈旋紧。3、接好电源线;上电,开关

氮化镓半导体材料光电器件应用介绍

GaN材料系列是一种理想的短波长发光器件材料,GaN及其合金的带隙覆盖了从红色到紫外的光谱范围。自从1991年日本研制出同质结GaN蓝色 LED之后,InGaN/AlGaN双异质结超亮度蓝色LED、InGaN单量子阱GaNLED相继问世。目前,Zcd和6cd单量子阱GaN蓝色和绿色 LED已进入大批

新方案可提高光电化学分解水制氢技术经济性

德国一个研究团队日前在英国《自然·通讯》杂志上发表论文说,在光电化学分解水制氢过程中同时利用氢气生产高附加值的化学品,可以提高产出价值,增强该技术在经济上的可行性。  光电化学分解水是清洁能源热门研究方向之一,该技术利用半导体材料吸收太阳光,在催化剂作用下直接分解水,得到氢气和氧气。近年来该技术的能

李灿:硅基光电极中界面特征对性能的影响

  近日,中国科学院大连化学物理研究所李灿院士、副研究员姚婷婷等在光电催化分解水研究方面取得重要进展,以单晶硅光电极为模型,识别了金属—氧化物—半导体(MOS)结构光阳极中制约其性能的关键界面因素,并针对性地引入相关界面调控策略,有效地促进了光生电荷分离提取和利用效率,实现了对光电转化器件的理性设计

研究揭示硅基光电极中界面特征对性能的影响

近日,中国科学院大连化学物理研究所李灿院士、副研究员姚婷婷等在光电催化分解水研究方面取得重要进展,以单晶硅光电极为模型,识别了金属—氧化物—半导体(MOS)结构光阳极中制约其性能的关键界面因素,并针对性地引入相关界面调控策略,有效地促进了光生电荷分离提取和利用效率,实现了对光电转化器件的理性设计和优

半导体所硅基光学矩阵处理器研究取得突破

  数字信号处理中的大多数算法均可转化为矩阵运算,光信号由于本征的并行和高带宽特性,非常适合进行矩阵运算。因此,为电学数字信号处理器嵌入光学运算内核是非常有前景的高性能数字信号处理方案。自从美国Stanford大学的J. W. Goodman教授于1978年提出基于自由空间光学的光学矩

我国实现硅基半导体自旋量子比特的超快操控

中新社合肥1月13日电 (张俊 张梦怡)记者13日从中国科学技术大学郭光灿院士团队获悉,该科研团队实现硅基半导体自旋量子比特的超快操控,其自旋翻转速率超过540MHz,是目前国际上已报道的最高值。研究成果11日在线发表在国际知名期刊《自然·通讯》上。 量子计算在原理上可通过特定算法,在一些具有重

研究实现人工光合作用高效稳定制氢

近日,中国科学技术大学教授孙海定、熊宇杰团队联合武汉大学刘胜院士团队,通过创新设计一种晶圆级可制造的新型硅基氮化镓纳米线光电极结构,实现了高达10.36%的半电池太阳能制氢效率,并在高电流密度下稳定产氢超过800小时,首次将光电极使用寿命从小于100小时的“小时级”推进至“月级”,成功突破传统光电制

半导体材料-硫化铂光电特性研究获新突破

  记者6月20日从云南大学材料与能源学院获悉,该学院杨鹏、万艳芬团队经过持续研发,解决了类石墨烯材料大面积均匀少层硫化铂的合成及其结构和物理性能的一系列问题,为更丰富的应用场景器件开发提供支持,同时给行将终结的摩尔定律注入新的希望,提供极具潜力的半导体材料。  “微电子技术历经半个多世纪发展,给人

杨晓刚团队综述丰富元素用于光电分解水制氢问题

  太阳能光电化学分解水制备氢气能源,被认为是解决人类可持续发展问题的重要方案之一。近日,河南许昌学院表面微纳米材料研究所暨河南省微纳米能量储存与转换材料重点实验室杨晓刚博士带领团队,在《纳米研究》杂志发表综述文章,介绍了相关实验研究的最新进展。  上世纪70年代,科学家发现二氧化钛能分解水产生氢气

我所揭示硅基光电极中界面特征对性能的影响

  近日,我所太阳能研究部(DNL16)李灿院士、姚婷婷副研究员等在光电催化分解水研究方面取得重要进展,以单晶硅光电极为模型,识别了金属—氧化物—半导体(MOS)结构光阳极中制约其性能的关键界面因素,并针对性地引入相关界面调控策略,有效地促进了光生电荷分离提取和利用效率,实现了对光电转化器件的理性设

新款晶圆问世|硅基化合物光电集成技术大突破

据中国光谷消息,全球首片8寸硅光薄膜铌酸锂光电集成晶圆在九峰山实验室下线。此项成果使用8寸SOI硅光晶圆键合8寸铌酸锂晶圆,单片集成光电收发功能,为目前全球硅基化合物光电集成最先进技术。近年来,由于5G通信、大数据、人工智能等行业的强力驱动,光子集成技术得到极大关注。公开资料显示,光子集成的概念类可

半导体所硅基集成光学导向逻辑器件研究取得系列进展

  自2007年美国科学家Hardy和以色列科学家Shamir共同提出光学导向逻辑的概念以来,光学导向逻辑引起了人们的广泛关注, 目前已有美国海军实验室、莱斯大学、菲斯克大学、以色列理工学院等多家研究机构从事相关研究。  与传统光学逻辑不同,光学导向逻辑的实现依赖于光开关网络,每个开

英国普莱塞半导体推出蓝色硅基LED-辐射功率更大

  英国普莱塞半导体(plessey semiconductors)宣布推出其基于硅基氮化钾制造平台的产品。新产品在420ma的条件下可以提供350mw的辐射功率。   早在今年4月,普莱思就宣布将推出可论证硅基氮化镓技术的pl111010led产品,这些新型led产品可通过高达1a的连续电流

硅衬底InGaN基半导体激光器研究方面取得进展

  硅是半导体行业最常见的材料,基于硅材料的电子芯片被广泛应用于日常生活的各种设备中,从智能手机、电脑到汽车、飞机、卫星等。随着技术的发展,研究者发现通过传统的电气互联来进行芯片与系统之间的通信已经难以满足电子器件之间更快的通信速度以及更复杂系统的要求。为解决这一问题,“光”被认为是一种非常有潜力的

半导体所硅基集成光学导向逻辑器件研究获重要进展

硅基集成光学导向逻辑器件实现或/或非、与/与非、同或/异或操作的波形图   在中国科学院“百人计划”项目的支持下,半导体研究所光电系统实验室在国际上率先实现光学导向逻辑器件的原理验证。   自2007年美国科学家Hardy和以色列科学家Shamir共同提出光学导向逻辑的概念以来,光学导向逻辑

化学所锂电池硅基负极研究取得进展

在实现碳达峰和碳中和目标的背景下,开发高能量密度、长寿命的锂离子电池至关重要。相较于传统石墨负极,具有更高理论比容量的硅基材料被认为是颇有前景的锂离子电池负极材料。然而,硅基负极在充放电时存在较大的体积变化,并伴随有材料结构粉化和电极/电解质间的界面副反应,限制了其循环寿命。因此,优化硅基材料的结构

化学所锂电池硅基负极研究取得进展

在实现碳达峰和碳中和目标的背景下,开发高能量密度、长寿命的锂离子电池至关重要。相较于传统石墨负极,具有更高理论比容量的硅基材料被认为是颇有前景的锂离子电池负极材料。然而,硅基负极在充放电时存在较大的体积变化,并伴随有材料结构粉化和电极/电解质间的界面副反应,限制了其循环寿命。因此,优化硅基材料的结构

几种半导体材料的光电子能谱研究

ZnO薄膜的光电子能谱研究表明:1)对某些条件下生长的薄膜,光致发光谱中存在的绿光发光峰来源于薄膜中介于Vo和Oi中间价态的氧;2)对首次利用溅射夹层GaAs方法制备的As掺杂的ZnO薄膜,O2下退火比较容易控制As的价态,有利于形成p型掺杂。首次采用ErF3到Alq3中的方法制作了1.53μm电发