清华大学陈柱成课题组Nature发表结构生物学重要研究成果

生物通报道:染色质重塑蛋白ISWI与Snf2、Chd1、Ino80同属于SWI2/SNF2 家族。ISWI是一些染色质重塑复合体的催化亚基,这些复合物沿着基因组DNA移动核小体,协助复制前进、转录抑制、异染色质形成和其他细胞核过程。 ISWI的ATPase马达是一个自主的重塑机器,其C端HSS结构域负责结合核小体外的linker DNA。ISWI催化核心的活性受到AutoN和NegC结构域的抑制,而H4尾巴和核小体外DNA对此起反作用,以确保适当的染色质景观。目前人们还不清楚AutoN和NegC是如何抑制和调控ISWI的。 清华大学陈柱成(Zhucheng Chen)教授的团队对此进行了深入研究。他们十二月六日在Nature杂志上发表文章,揭示了染色质重塑蛋白ISWI的结构和调控机制。陈柱成教授曾师从著名结构生物学家尼古拉-帕夫拉提奇,研究DNA损失修复以及DNA同源重组的分子机理。2011年回国参加工作,2012年入选......阅读全文

著名学者庄小威Nature解析核小体重塑

  来自哈佛大学的研究人员在新研究中探究了ISWI染色质重塑因子协调重塑核小体的机制。研究结果发表在6月29日的《自然》(Nature)杂志上。  文章的通讯作者之一是著名的华裔女科学家,哈佛大学庄小威(Xiaowei Zhuang)教授,庄教授早年毕业于中国科技大学少年班,34岁的时候就成为了哈佛

染色质的组装过程

①最开始是H3·H4四聚体的结合,由CAF-1介导与新合成的裸露的DNA结合。②然后是两个H2A·H2B二聚体由NAP-1和NAP-2介导加入。为了形成一个核心颗粒,新合成的组蛋白被特异地修饰。组蛋白H4的Lys5和Lys12两个位点典型地被乙酰化。③核小体最后的成熟需要ATP来创建一个规则的间距以

清华大学陈柱成课题组Nature发表结构生物学重要研究成果

  生物通报道:染色质重塑蛋白ISWI与Snf2、Chd1、Ino80同属于SWI2/SNF2 家族。ISWI是一些染色质重塑复合体的催化亚基,这些复合物沿着基因组DNA移动核小体,协助复制前进、转录抑制、异染色质形成和其他细胞核过程。  ISWI的ATPase马达是一个自主的重塑机器,其C端HSS

高冠军/戴俊彪合作果蝇组蛋白H3/H4系统解析组蛋白剂量

  组蛋白(Histone)在真核生物染色体中扮演着重要的角色,是染色体结构单元核小体的重要组成部分。由核心组蛋白H3,H4,H2A,H2B形成的八聚体是DNA缠绕的主要承载体【1】。除了用以装配染色体外,组蛋白的另外一个重要功能是参与基因组信息的表达调控。组蛋白氨基酸残基上的翻译后修饰如乙酰化、甲

染色质的前期组装过程

  ①最开始是H3·H4四聚体的结合,由CAF-1介导与新合成的裸露的DNA结合。  ②然后是两个H2A·H2B二聚体由NAP-1和NAP-2介导加入。为了形成一个核心颗粒,新合成的组蛋白被特异地修饰。组蛋白H4的Lys5和Lys12两个位点典型地被乙酰化。  ③核小体最后的成熟需要ATP来创建一个

清华、同济Nature子刊发布表观遗传研究新成果

  来自清华大学、同济大学等处的研究人员证实,组蛋白H1介导的表观遗传调控通过调节H4K16乙酰化控制了生殖干细胞(GSC)自我更新。这一重要的研究发现发布在11月19日的《自然通讯》(Nature Communications)杂志上。  清华大学医学院的倪建泉(Jian-Quan Ni)研究员及

清华大学最新Nature发文:NuA4选择性乙酰化组蛋白H4的机理

  生物体遗传信息DNA缠绕组蛋白八聚体1.7圈形成了染色体的基本组成单位——核小体。组蛋白H4的 N端尾巴与临近的核小体相互作用,促进染色体高级结构的形成以及异染色质沉默。核小体组装和异染色质形成阻碍了DNA的复制、转录以及损伤修复等重要生物学过程。生物体进化出了一系列的机制来克服核小体的阻碍。其

陈柱成/李雪明/李明组揭示SNF2染色质重塑中DNA滑移的机理

  染色质重塑复合物利用ATP的能量移动核小体在基因组上的位置和组成成分,在控制染色质结构、调节基因转录等方面具有重大作用,主要可以分四大类:SWI/SNF、CHD、ISWI和INO80【1】。这些分子机器的运行机理,即如何利用ATP水解的能量推动核小体移动和组蛋白交换,一直是一个未解的科学问题。利

关于组蛋白组成部分的介绍

  组蛋白是存在于染色体内的与DNA结合的碱性蛋白质,染色体中组蛋白以外的蛋白质成分称非组蛋白。绝大部分非组蛋白呈酸性,因此也称酸性蛋白质或剩余蛋白质。组蛋白于1834年由德国科学家A.科塞尔发现。组蛋白对染色体的结构起重要的作用。染色体是由重复单位──核小体组成。每一核小体包括一个核心8聚体(由4

研究揭示核小体乙酰转移酶NuA4的动态机制

组蛋白乙酰化是重要的表观遗传修饰。组蛋白乙酰转移酶在染色质结构、基因转录调控和DNA损伤修复过程中发挥重要作用。通常,表观遗传调控中的大部分组蛋白修饰酶具有位点特异性,即一种修饰酶只对组蛋白尾部的某个特定残基进行修饰。但有研究发现,较多组蛋白乙酰转移酶可以修饰多个位点。例如,核小体乙酰转移酶NuA4

研究揭示核小体乙酰转移酶NuA4的动态机制

  组蛋白乙酰化是重要的表观遗传修饰。组蛋白乙酰转移酶在染色质结构、基因转录调控和DNA损伤修复过程中发挥重要作用。通常,表观遗传调控中的大部分组蛋白修饰酶具有位点特异性,即一种修饰酶只对组蛋白尾部的某个特定残基进行修饰。但有研究发现,较多组蛋白乙酰转移酶可以修饰多个位点。例如,核小体乙酰转移酶Nu

关于组蛋白的概述

  组蛋白的基因非常保守。亲缘关系较远的种属中,四种组蛋白(H2A、H2B、H3、H4)氨基酸序列都非常相似,如海胆组织H3的氨基酸序列与来自小牛胸腺的H3的氨基酸序列间只有一个氨基酸的差异,小牛胸腺的H3的氨基酸序列与豌豆的H3也只有4个氨基酸不同。不同生物的H1序列变化较大,在某些组织中,H1被

研究揭示NuA4乙酰化核小体的动态机制

  中国科学院生物物理研究所朱平研究组与中国科学院物理研究所朱洪涛、陆颖研究组合作,揭示了酵母中组蛋白乙酰转移酶NuA4对核小体进行乙酰化的动态机制。相关论文3月18日发表于美国《国家科学院院刊》(PNAS)。  组蛋白乙酰化是一种重要的表观遗传修饰,参与染色质结构调控、基因转录激活以及DNA损伤修

染色体中的蛋白质有什么用

染色体上的蛋白质包括组蛋白和非组蛋白。组蛋白是染色体的结构蛋白,它与DNA组成核小体。通常可以用2mol/LNaCl或0.25mol/L的HCl/H2SO4处理使组蛋白与DNA分开。组蛋白分为H1、H2A、H2B、H3及H4。这些组蛋白都含有大量的赖氨酸和精氨酸,其中H3、H4富含精氨酸,H1富含赖

关于组蛋白修饰的方式—甲基化的基本信息介绍

  组蛋白甲基化是由组蛋白甲基化转移酶(histonemethyl transferase,HMT)完成的。甲基化可发生在组蛋白的赖氨酸和精氨酸残基上,而且赖氨酸残基能够发生单、双、三甲基化,而精氨酸残基能够单、双甲基化,这些不同程度的甲基化极大地增加了组蛋白修饰和调节基因表达的复杂性。甲基化的作用

组蛋白的功能和分类

用聚丙烯酰胺凝胶电泳可以区分5种不同的组蛋白:H1、H2A、H2B、H3和H4。几乎所有真核细胞都含有这5种组蛋白,而且含量丰富,每个细胞每种类型的组蛋白约6×10个分子。5种组蛋白在功能上分为两组:①核小体组蛋白。包括H2A、H2B、H3和H4。这4种组蛋白有相互作用形成复合体的趋势,它们通过C端

H4亚型禽流感病毒研究获进展

  中国科学院院士、中科院北京生命科学研究院副院长高福团队在H4亚型禽流感病毒适应人的分子机制和跨种间传播预警预测方面取得新的重要进展。研究结果以《H4亚型流感病毒血凝素蛋白从结合禽源到人源受体适应的分子基础》为题,于8月1日在线发表在国际学术期刊Cell Reports上。  H4亚型流感病毒在野

关于组蛋白的内容简介

  组蛋白(histone)是指所有真核生物的细胞核中,与DNA结合存在的碱性蛋白质的总称。其分子量约10000~20000Kda。  真核生物体细胞染色质中的碱性蛋白质,含精氨酸和赖氨酸等碱性氨基酸特别多,二者加起来约为所有氨基酸残基的1/4。组蛋白与带负电荷的双螺旋DNA结合成DNA-组蛋白复合

组蛋白的相关信息介绍

  组蛋白(histone)是指所有真核生物的细胞核中,与DNA结合存在的碱性蛋白质的总称。其分子量约10000~20000Kda。  真核生物体细胞染色质中的碱性蛋白质,含精氨酸和赖氨酸等碱性氨基酸特别多,二者加起来约为所有氨基酸残基的1/4。组蛋白与带负电荷的双螺旋DNA结合成DNA-组蛋白复合

核自身抗原精子蛋白的研究进展

  到目前为止(2012年)的研究发现,人的sNASP和tNASP均具有结合组蛋白H3/H4的分子伴侣活性,而且它们还都可以结合组蛋白H1,具有组蛋白H1分子伴侣活性。因此,可想而知,它们在DNA复制后的染色质重折叠的最后一步或者最后阶段中发挥着至关重要的作用。NASP在一级结构上以及通过现代计算生

染色质蛋白组蛋白的相关介绍

  组蛋白是构成真核生物染色体的基本结构蛋白,富含带正电荷的Arg和Lys等碱性氨基酸,等电点一般在pH10.0以上,属碱性蛋白质,可以和酸性的DNA紧密结合,而且一般不要求特殊的核苷酸序列。  用聚丙烯酰胺凝胶电泳可以区分5种不同的组蛋白:H1、H2A、H2B、H3和H4。几乎所有真核细胞都含有这

组蛋白的分类及功能介绍

组蛋白是构成真核生物染色体的基本结构蛋白,富含带正电荷的Arg和Lys等碱性氨基酸,等电点一般在pH10.0以上,属碱性蛋白质,可以和酸性的DNA紧密结合,而且一般不要求特殊的核苷酸序列。用聚丙烯酰胺凝胶电泳可以区分5种不同的组蛋白:H1、H2A、H2B、H3和H4。几乎所有真核细胞都含有这5种组蛋

谈谈组蛋白提取试剂盒的组成和特点

 在生物学中,组蛋白是染色质的主要蛋白质成分。组蛋白就像一个线轴,DNA缠绕在线轴上,并在基因调控中发挥重要作用。核心组蛋白包括H2A、H2B、H3和H4。组蛋白的翻译后修饰可以改变DNA和核蛋白之间的相互作用。H3和H4组蛋白具有从核小体延伸的长尾。它们在不同位点进行共价修饰(如甲基化、乙酰化、磷

组蛋白的功能介绍

5种组蛋白在功能上分为两组:①核小体组蛋白。包括H2A、H2B、H3和H4。这4种组蛋白有相互作用形成复合体的趋势,它们通过C端的疏水氨基酸互相结合,而N端带正电荷的氨基酸则向四面伸出以便与DNA分子结合,从而帮助DNA卷曲形成核小体的稳定结构。这4种组蛋白没有种属及组织特异性,在进化上十分保守,特

北京生命科学研究所朱冰博士访问广州生物院

  11月23日,北京生命科学研究所朱冰教授访问中科院广州生物医药与健康研究院,并做了题为“表观遗传信息维持”的学术报告,报告会由华南干细胞与再生医学研究所姚红杰博士主持。   朱冰介绍了他实验室近几年在表观遗传信息维持的突破性工作成果,该实验室研究内容主要集中在表观遗传学的生物化学机理研究。其研

关于组蛋白的相关介绍

  组蛋白是染色体基本结构蛋白,因富含碱性氨基酸Arg 和lys 而呈碱性,可与酸性的DNA紧密结合。组蛋白包含五个组分,分子质量为11-23ku,按照分子量由大到小分别称为H1、H3、H2A、H2B和H4。[1]  组蛋白(histones)真核生物体细胞染色质中的碱性蛋白质,含精氨酸和赖氨酸等碱

H3C13基因编码功能及结构描述

组蛋白是构成真核生物染色体纤维核小体结构的基本核蛋白四个核心组蛋白(H2A、H2B、H3和H4)中的每一个分子形成一个八聚体,其中大约146 bp的DNA被包裹在被称为核小体的重复单元中。连接组蛋白H1在核小体之间与连接DNA相互作用,在染色质压缩成高阶结构中发挥作用该基因无内含子,编码一个复制依赖

H3C13基因突变与药物因子介绍

组蛋白是构成真核生物染色体纤维核小体结构的基本核蛋白四个核心组蛋白(H2A、H2B、H3和H4)中的每一个分子形成一个八聚体,其中大约146 bp的DNA被包裹在被称为核小体的重复单元中。连接组蛋白H1在核小体之间与连接DNA相互作用,在染色质压缩成高阶结构中发挥作用该基因无内含子,编码一个复制依赖

H3C13基因编码功能及结构描述

组蛋白是构成真核生物染色体纤维核小体结构的基本核蛋白四个核心组蛋白(H2A、H2B、H3和H4)中的每一个分子形成一个八聚体,其中大约146 bp的DNA被包裹在被称为核小体的重复单元中。连接组蛋白H1在核小体之间与连接DNA相互作用,在染色质压缩成高阶结构中发挥作用该基因无内含子,编码一个复制依赖

组蛋白的合成修饰的相关介绍

  这是形成组蛋白各组分微不均一性的主要原因。修饰的方式有:  ①乙酰化。有两种:  一种是H1、H2A、H4组蛋白的氨基末端乙酰化,形成α-乙酰丝氨酸,组蛋白在细胞质内合成后输入细胞核之前发生这一修饰。  另一种是在H2A、H2B、H3、H4的氨基末端区域的某些专一位置形成N6-乙酰赖氨酸。  ②