科学家揭示大豆生态适应性遗传机制
大豆是世界上重要的经济粮食作物,起源于我国黄淮海地区,是典型的短日照作物。通常,当高纬度地区大豆品种引种到低纬度区域时,由于其对光周期极其敏感,成熟期大大提前,导致大豆植株生物量和产量降低,这极大程度限制了低纬度地区的大豆种植。大豆长童期 (Long Juvenile, LJ) 性状在上世纪70年代被发现,并成功应用于低纬度地区大豆育种。LJ性状的导入,突破了大豆在低纬度地区产量极低的限制,使大豆在低纬度(尤其是南美地区)得以快速扩张和推广。上世纪90年代,研究发现J是控制大豆LJ性状的关键位点,然而其编码基因和分子调控机制一直未明确。 中国科学院遗传与发育生物学研究所田志喜研究组与中科院东北地理与农业生态研究所孔凡江研究组和刘宝辉研究组以及中科院华南植物园侯兴亮研究组合作,通过正向遗传学的方法图位克隆了J基因。发现J基因是拟南芥EARLY FLOWERING 3(ELF3)的同源基因,通过功能互补实验和近等基因系等方法验......阅读全文
科学家揭示大豆生态适应性遗传机制
大豆是世界上重要的经济粮食作物,起源于我国黄淮海地区,是典型的短日照作物。通常,当高纬度地区大豆品种引种到低纬度区域时,由于其对光周期极其敏感,成熟期大大提前,导致大豆植株生物量和产量降低,这极大程度限制了低纬度地区的大豆种植。大豆长童期 (Long Juvenile, LJ) 性状在上世纪70
遗传发育所揭示大豆籽粒性状调控的新机制
大豆含有丰富的油脂和蛋白质,是重要的粮食作物和经济作物。种子大小和粒重是植物适应环境的一个重要特征,也是产量构成的要素之一。然而,人们当前对大豆种子粒重调控机制的认识仍十分有限,因此挖掘粒重调节基因并解析其分子机制,对培育优质的大豆品种具有重要意义。 4月17日,《植物学报》(Journal
遗传发育所发现大豆调控抗盐耐旱的分子机制
大豆是重要的经济作物,是人类食用油脂和蛋白及动物饲料的重要来源。其在响应非生物胁迫的分子调控机制方面的研究仍然存在较大空白。 中国科学院遗传与发育生物学研究所基因组生物学研究中心/植物基因组学国家重点实验室陈受宜研究组和张劲松研究组在前期的研究中鉴定出一系列能够响应逆境胁迫的转录因子。该研究利
遗传发育所揭示DNA甲基化在大豆驯化改良中的变异机制
作物驯化是农业发展中最重要的事件之一。通过对野生作物的不断驯化改良,人类才得以获得符合生产生活需要的现代作物。驯化改良过程就是对作物群体基因组多样性进行选择的过程。目前对作物驯化改良的研究主要集中在对遗传变异的选择,在DNA水平鉴定到了大量的驯化选择区间。然而,除了遗传变异,表观遗传也在植物的生
中美大豆品种存在大量遗传变异
美国种植的大豆品种同中国种植的大豆品种有何不同?依据新近完成的中国大豆基因组测序,科学家发现,中美大豆品种在基因组上存在着大量的遗传变异。中国大豆基因组测序的完成,为优良大豆品种的培育奠定了基础。相关研究以封面文章形式在线发表于最新一期的《中国科学—生命科学》(英文版)上。作为重要的经济作物,大豆起
遗传发育所大豆茸毛密度遗传网络调控研究获进展
大豆驯化起源于中国,随后广泛传播于世界各地,为人类提供了主要的植物油和蛋白资源,是世界性的重要粮食经济作物。表皮毛是植物表皮细胞分化形成的一种特殊的细胞形态,广泛分布于植物的叶片、茎秆以及花萼等地上部器官表面。作为植物应对外界环境(生物或者非生物胁迫)的第一道防线,表皮毛在植物的生长发育以及抗逆
大豆基因组重测序表明:野生大豆遗传多样性更高
“中原有菽,庶民采之。”五千年前,华夏始祖将野生大豆驯化,变成今天的“五谷”之一。而今,一项被称为“大豆回家”的基因组研究计划在其故乡中国取得突破。 11月15日,由香港中文大学、华大基因研究院、农业部基因组重点实验室、中国农业科学院等单位合作完成的《31个大豆基因组重测序揭示遗传多样性和
Genome-Biology:大豆重要性状遗传网络解析
不同复杂性状间的耦合是分子设计育种的关键科学问题。作物的产量、品质等大都是多基因控制的复杂性状,由于受到一因多效和遗传连锁累赘的影响,使某些性状在不同材料和育种后代中协同变化,呈现耦合性相关。解析复杂性状间耦合的遗传调控网络,明确关键调控单元,对分子设计育种具有重要意义。大豆原产中国,是人类和动
大豆适应高温环境分子机制破解
华南农业大学农学院年海教授、中国农业科学院作物科学研究所韩天富研究员领衔的团队12月22日宣布,在大豆适应短日高温环境的分子机制研究领域取得重要进展。他们克隆了研究者寻觅了近半个世纪的大豆长童期基因J,并揭示了J在中、美和巴西大豆品种中的分布规律,相关研究结果发表在《分子植物》杂志上。 热带地
大豆抗病分子机制研究获进展
大豆是重要的油料作物,我国作为世界最大的大豆消费国,其来源大量依赖进口,这凸显了大豆安全生产的重要性。然而,大豆在生长过程中易受多种病原微生物的侵袭,进而对经济收益产生影响。因此,深入研究大豆免疫机制并挖掘抗病基因兼具理论意义和应用价值。 近日,中国科学院东北地理与农业生态研究所研究员冯献忠团队联合
研究人员破解大豆与大豆花叶病毒攻防机制
近日,南京农业大学农学院智海剑教授团队在国际植物领域著名杂志Molecular Plant上在线发表了“A cell wall-localized NLR confers resistance to Soybean mosaic virusby recognizing viral-encoded
遗传发育所在大豆可变剪接研究中取得进展
作为一种重要的基因转录后调控机制,可变剪接在真核生物中普遍发生,在基因表达和功能多样性调控中起着重要的作用。不同物种、同一物种的不同组织以及不同基因家族的可变剪接在形式和比例上都存在差异,然而,决定这些差异的因素还尚不为人知。 中国科学院遗传与发育生物学研究所田志喜课题组通过对来自大豆不同
大豆进化与驯化表观遗传调控规律获揭示
原文地址:http://news.sciencenet.cn/htmlnews/2021/3/454973.shtm 近日,南京农业大学多倍体团队在《植物细胞》上发表研究论文。该研究整合三维基因组、染色质可及性、组蛋白修饰、DNA甲基化和转录组,深入解析了在大豆多倍化、二倍化与人工驯化过程中,三
大豆籽粒性状调控的新机制
大豆含有丰富的油脂和蛋白质,是重要的粮食作物和经济作物。种子大小和粒重是植物适应环境的一个重要特征,也是产量构成的要素之一。然而,人们当前对大豆种子粒重调控机制的认识仍十分有限,因此挖掘粒重调节基因并解析其分子机制,对培育优质的大豆品种具有重要意义。 4月17日,《植物学报》(Journal of
遗传发育所大豆重要性状遗传网络解析取得新进展
不同复杂性状间的耦合是分子设计育种的关键科学问题。作物的产量、品质等大都是多基因控制的复杂性状,由于受到一因多效和遗传连锁累赘的影响,使某些性状在不同材料和育种后代中协同变化,呈现耦合性相关。解析复杂性状间耦合的遗传调控网络,明确关键调控单元,对分子设计育种具有重要意义。大豆原产中国,是人类和动
大豆对孢囊线虫超亲遗传抗性研究中获进展
大豆孢囊线虫病是制约大豆生产的全球性病害之一。大豆孢囊线虫的抗性由多基因和数量性状控制。大多数研究是基于高抗和高感品种杂交形成的遗传分离群体,存在高抗基因时,微效基因时常被掩盖而不能被有效检测,但后代对线虫的表型反应相对于亲本显现为广泛的变异。此外,当前对大豆孢囊线虫的抗性评价是建立在每株孢囊数
研究发现大豆籽粒性状调控新机制
大豆是全球重要的植物蛋白和植物油来源之一,其广泛应用于人类食品、动物饲料及工业原料等领域,具有重要的经济和社会价值。提高大豆产量一直是大豆育种领域的核心目标,直接关系全球粮食安全和农业可持续发展。近年来,大豆育种研究取得诸多进展,但学界对大豆种子性状的分子调控机制尚不明晰。因此,深入研究大豆种子
宽大鼻甲的遗传机制?
鼻甲肥大的遗传机制目前尚不明确。 尽管一些研究提到鼻甲肥大可能与遗传因素有关,但具体涉及的遗传变异和遗传途径尚未被完全阐明。此外,环境因素,如过敏、感染、慢性鼻炎等,也被认为在鼻甲肥大的发生中扮演着重要角色。 如果您担心鼻甲肥大可能与遗传有关,建议您进行家族史调查,并咨询耳鼻喉科医生以获得更详
遗传发育所等鉴定大豆百粒重调控基因
大豆是我国重要的粮食作物和经济作物,是植物蛋白和油分的重要来源。百粒重是大豆产量的重要构成因子,因此是大豆育种的重要目标性状。由于栽培大豆品种遗传基础狭窄,在育种过程中某些栽培大豆品种中优异等位的丢失,阻碍了大豆百粒重和产量的进一步增加。近年来研究人员对大豆百粒重遗传位点的研究较多,目前SoyB
遗传发育所大豆多基因聚合育种研究取得重要进展
黄淮海流域是我国大豆的第二产区和夏大豆的最大产区,常年播种面积在3000多万亩,而平均单产不足130公斤/亩。除了单产低以外,该地区存在的另一主要问题是大豆病毒病危害严重,导致大豆产量下降和品质变劣。解决上述问题的有效途径是培育高产抗病大豆新品种在生产上推广应用。 中国科学院遗
美揭示大豆细胞膜自组装分子机制
美国马里兰大学研究人员开发出一种新的计算模型,首次利用全原子力场模拟构建了大豆细胞膜的详细结构。这一成果对膜蛋白研究具有重要价值,有助于推动生化药剂、生物燃料等产品的开发。 细胞膜是防止细胞外物质自由进入细胞的屏障,它保证了细胞内环境的相对稳定,使各种生化反应能够有序运行。对于细胞膜结构和行为
大豆根瘤固氮分子机制研究取得新进展
大豆根瘤共生固氮是一个非常重要的科学问题,也是一个关乎大豆产量和品质的重要农艺性状。但是目前对大豆根瘤形成和固氮效率调控的分子机制的了解还非常少。 中国科学院遗传与发育生物学研究所农业资源研究中心李霞课题组通过研究大豆miR172c的表达和功能,在大豆根瘤形成调控机制的研究中取得了重要进展。
Cell发现全新的遗传机制
密歇根大学和加州大学的研究人员在Cell杂志上发表文章,阐明了一个影响好几代人的神秘遗传机制。这些家族的成员一直受到先天眼疾的困扰,但却没人明白其遗传学基础。 研究人员通过测序发现了蛋白RBP4上的突变,该蛋白负责运输视黄醇(一种维生素A),为眼睛发育提供基本的营养。研究显示,这种突变造成了功
花生表型分化遗传机制揭示
8月17日,从河南省农业科学院了解到,中国工程院院士张新友及其团队联合意大利巴里奥尔多莫罗大学、荷兰瓦赫宁根大学、中国农业科学院深圳农业基因组研究所,通过叶绿体基因组和核基因组分析,揭示了花生的遗传驯化史和表型分化的遗传机制,并挖掘出调控花生亚种分化的关键基因,对指导花生育种工作具有重要的理论和
新研究解析调控大豆粒重遗传位点和驯化基因
近日,广东省科学院南繁种业研究所教授王振宇团队联合南京农业大学国家大豆改良中心教授赵团结团队,研究解析调控大豆粒重遗传位点和驯化基因。相关成果发表于《理论与应用遗传学》。俗语说:“宁可食无肉,不可食无豆。”大豆是优质的植物蛋白资源,也是健康的食用植物油源。我国是大豆的原产地,种植和消费历史悠久。然而
遗传发育所发现大豆籽粒大小和粒重调控的新通路
大豆是植物蛋白和食用油脂的重要来源,在食品工业和农业生产中占有重要地位。充分利用我国大豆丰富的遗传资源,挖掘相关调控因子,对培育高产优质大豆品种和保障粮食安全具有重要意义。 中国科学院遗传与发育生物学研究所张劲松研究组对我国不同区域的大豆品种进行转录组测序以及分析,鉴定到影响大豆种子百粒重的相
研究发现大豆异黄酮积累的新机制
近日,中国农业科学院作物科学研究所大豆育种技术创新与新品种选育创新团队研究发现,双功能锌指蛋白类转录因子GmZFP7可正向调控大豆异黄酮积累,为大豆异黄酮分子育种提供理论依据。相关研究结果在线发表于《新植物学家》(New Phytologist)。 大豆不仅含有丰富的蛋白质和油脂,同时还富含异
大豆开花适应低纬度地区机制研究获重要进展
近日,华南农业大学生命科学学院教授王应祥团队与华南农业大学农学院教授杨存义团队合作,研究解析了组蛋白去甲基化酶GmLDL2调控大豆开花的分子机制,并揭示了其优异单倍型适应低纬度地区的遗传基础,为“北豆南移”提供了新的基因资源。相关成果在线发表于《自然-通讯》(Nature Communication
张劲松研究团队发现大豆耐盐新机制
盐碱、干旱等非生物胁迫不利于作物生长,造成减产甚至导致植物死亡,是制约农业生产的主要环境因素。大豆是重要农作物,提高大豆耐盐能力有助于增强大豆对灾害的抵抗能力,并能利用低盐碱化土地增加种植面积,提高产量。最近,中国科学院遗传与发育生物学研究所研究员张劲松研究团队发现核因子Y(Nuclear fa
研究发现大豆异黄酮积累的新机制
原文地址:http://news.sciencenet.cn/htmlnews/2022/12/491178.shtm 大豆田间种植 中国农科院供图 近日,中国农业科学院作物科学研究所大豆育种技术创新与新品种选育创新团队研究发现,双功能锌指蛋白类转录因子GmZFP7可正向调