“新型CZT半导体X射线和γ射线探测器研制”专项通过验收

科技部评估中心于2017年4月14日在北京组织了由我校主持完成的首批国家重大科学仪器设备开发专项“新型CZT半导体X射线和γ射线探测器研制”项目综合验收评审会。以中国工程院潘自强院士为验收专家组组长的13名评审专家对项目进行了严格审查,最终以97.4分顺利通过了项目综合验收。 该项目于2011年立项实施,是我校首个、国家首批国家重大科学仪器设备开发专项项目。项目负责人材料学院介万奇教授联合了我校材料学院、计算机学院、清华大学、中科院半导体研究所、中科院高能物理研究所、中科院苏州医工所、西北核技术研究所、同方威视、核工业203所等9个单位,历时6年时间艰苦攻关,突破了大尺寸探测器级CZT晶体的设计、合成、生长技术,晶体加工、电极制备与封装,不同应用背景探测器结构设计和评测,单元及像素探测器专用ASIC芯片设计等10余项关键技术,开发出高单晶率、低缺陷密度的大尺寸探测器级CZT晶体材料生长与加工技术,建立并完善单元型、线阵及像......阅读全文

X射线探测器概述

  X射线探测器(X-raydetector)是CT成像的核心,将肉眼看不到的“X射线”转换为最终能转变为图像的“数字化信号”。  x射线探测器是一种将X射线能量转换为可供记录的 电信号的装置。它接收到射线照射,然后产生与辐射强度成正比的电信号。 通常探测器所接受到的射线信号的强弱,取决于该部位的人

气体X射线探测器简介

  气体探测器均以气体作为探测介质,内部多充有以多种惰性气体为主混合气体,并在探测器两极加上电压小室。其小室的形状大小结构因气体探测器的不同会有加大差别。在探测器使用时我们多将内部气体大气压加至2到3个大气压,这样可以有效提高气体探测器的探测效率。气体探测器的工作原理是通过收集电离电荷获取核辐射信息

X射线衍射仪的的X射线探测器和控制装置介绍

  (1)X射线探测器 —— 测量X射线强度的计数装置;  计数器的主要功能是将X射线光子的能量转换成电脉冲信号。通常用于X射线衍射仪的辐射探测器有正比计数器、闪烁计数器和位敏正比探测器。  (2)X射线系统控制装置 —— 数据采集系统和各种电气系统、保护系统。  X射线能对人体组织造成伤害,在自己

新型柔性X射线探测器面世

原文地址:http://news.sciencenet.cn/htmlnews/2023/11/511891.shtm 研究人员手持新探测器。图片来源:萨里大学科技日报北京11月7日电 (记者刘霞)英国科学家开发出一种有机半导体材料,并利用其研制出一款新型柔性X射线探测器。这种探测器不仅“身

X射线探测器的发展简介

  增大z轴的覆盖宽度  从发展的角度看,希望X射线管旋转一周就能获得更多的层面,即可完成一个脏器的扫描,实现所谓的容积扫描(Volume Scan)。为此势必要增大探测z轴的覆盖宽度,要想延长z轴的覆盖宽度,不仅取决于增加探测器的排数,建立更多的数据采集通道同样非常重要,这样才能既保证Z轴的覆盖宽

X射线探测器的结构相关介绍

  CT机种的X射线探测器结构如图所示。位于管套中的真空管为旋转阳极式的射线管。管内设有阳极、阴极、灯丝和转子,在真空管外部对应阳极转子处设有定子线圈。定子线圈通入电流产生旋转磁场,在铜质的转子中产生。  一个典型的探测器包括:闪烁体、光电转换阵列和电子学部分。此外还有软件、电源等附件。目CT中常用

X射线探测器相关内容

  X射线探测器主要是用于测量目标样品发出的X射线荧光,目前市场上已经有多种不同类型的X射线荧光分析探测器可用。能量色散X射线荧光光谱分析技术通常使用的为固态探测器,例如SI-PIN探测器或者硅漂移探测器(SSD)等。每种类型的探测器在不同的应用方面都具有不同的优劣势,因此并不存在最好与最差之分,只

关于闪烁X射线探测器的介绍

  在介绍闪烁探测器之前,必须先了解光脉冲,当闪烁物质受到放射线或其他高能粒子辐照时会激发阻止介质原子,被激发的原子由激发态退激回到基态时会形成荧光脉冲[7]。闪烁探测器正是利用某些物质在核辐射的作用下会发光的这一特性工作的。闪烁探测器主要是由被封闭在一个不透明的外壳里的闪烁体、接收光的收集系统、光

半导体X射线探测器相关介绍

  半导体探测器是以半导体材料为探测介质的辐射探测器。锗和硅是我们最通用的半导体探测材料,其基本原理与气体电离室相类似。晶体计数器可以认为是半导体探测器的前身,20世纪初期人们发现在核辐射下可以通过某些固体电介质产生电导现象,在这之后金刚石、氯化银等晶体计数器又相继被人们发明。可是我们至今无法解决晶

X射线荧光(XRF):理解特征X射线

  什么是XRF?   X射线荧光定义:由高能X射线或伽马射线轰击激发材料所发出次级(或荧光)X射线。这种现象广泛应用于元素分析。  XRF如何工作?   当高能光子(X射线或伽马射线)被原子吸收,内层电子被激发出来,变成“光电子”,形成空穴,原子处于激发态。外层电子向内层跃迁,发射出能量等于两级能

“新型CZT半导体X射线和γ射线探测器研制”专项通过验收

  科技部评估中心于2017年4月14日在北京组织了由我校主持完成的首批国家重大科学仪器设备开发专项“新型CZT半导体X射线和γ射线探测器研制”项目综合验收评审会。以中国工程院潘自强院士为验收专家组组长的13名评审专家对项目进行了严格审查,最终以97.4分顺利通过了项目综合验收。  该项目于2011

多能混合像素光子计数X射线探测器

  我们一直持续致力于不断的探索研究去突破技术壁垒,以获得更为高效的测试过程及测试装置,使测试性能趋于完美。目前我们在同步仪器及科学研究领域所取得的巨大成就已充分证明了这一点。      新型的EIGER X 系列探测器可以为要求极为苛刻的同步应用提供好的探测性能。具有连续读数能力的千赫兹帧速率的成

X射线探测器的基本参数

  能量—电荷系数  X射线在介质物质中平均得到的电荷(N)与损耗的能量(E)的比值,被我们称为能量—电荷转换系数。由于能量—电荷转换具有统计性,所以一般表示为平均值。  能量分辨率  X射线探测器中最为重要的系统参数便是能量分辨率,能量分辨率反映了探测器对不同类型的入射粒子的能量分辨能力。能量分辨

关于X-射线荧光仪探测器的介绍

   流(充)气正比计数器和闪烁计数器用于探测不同的元素,其中充气正比计数器一般是填充 Ar、Kr 等惰性气体;一定要注意此类计数器头部玻璃很容易破碎,不能碰撞;长期使用后,充气正比计数器头部容易吸附灰尘影响计数,应该定期清理。流气正比计数器是让探测器气体流动,一般是用1 μm~6 μm 厚的聚丙烯

简介闪烁X射线探测器的工作原理

  闪烁探测器的工作原理是:放射线入射到闪烁体后发出荧光;荧光光子被收集到光电倍增管的光阴极,通过光电效应转换出光电子;光电子通过电子运动并在光电倍增管各级间倍增,最后在阳极输出回路输出信号。闪烁探测器的探测动态范围很宽,对能量在1eV到1GeV范围内的辐射粒子都适用[8],如今己成为最常用的探测器

软X射线源上X射线能谱与X射线能量的测量

本文介绍了国内首次利用针孔透射光栅谱仪对金属等离子体Z箍缩X射线源能谱的测量结果及数据处理方法。同时用量热计对该源的单脉冲X射线能量进行了测量并讨论了其结果。

X射线管中X射线的产生原理

实验室中X射线由X射线管产生,X射线管是具有阴极和阳极的真空管,阴极用钨丝制成,通电后可发射热电子,阳极(就称靶极)用高熔点金属制成(一般用钨,用于晶体结构分析的X射线管还可用铁、铜、镍等材料).用几万伏至几十万伏的高压加速电子,电子束轰击靶极,X射线从靶极发出.

X射线诊断

  X射线应用于医学诊断[6],主要依据X射线的穿透作用、差别吸收、感光作用和荧光作用。由于X射线穿过人体时,受到不同程度的吸收,如骨骼吸收的X射线量比肌肉吸收的量要多,那么通过人体后的X射线量就不一样,这样便携带了人体各部密度分布的信息,在荧光屏上或摄影胶片上引起的荧光作用或感光作用的强弱就有较大

X射线散射

美国物理学家康普顿(Arthur Holy Compton,1892~1962)在大学生时期就跟随其兄卡尔·康普顿开始X射线的研究。后来他到了卡文迪什实验室,主要从事g射线的实验研究。他用精湛的实验技术精确测定了γ射线的波长,并确定γ射线在散射后波长会变得更长。但他没能从理论上解释这个实验事实。他到

X-射线激光

X 射线激光指的是 XFEL (x-ray free-electron laser),X 射线自由电子激光。而这种激光,是将自由电子激光技术(FEL)产生的激光,拓展到 X 射线范围内而产生的一种 X 射线激光。这种激光的强度可达传统方法产生的激光亮度的十亿倍,因此可让较小晶体产生出足够强的衍射图样

X射线光谱

1914年,英国物理学家莫塞莱(Henry Moseley,1887-1915)用布拉格X射线光谱仪研究不同元素的X射线,取得了重大成果。莫塞莱发现,以不同元素作为产生X射线的靶时,所产生的特征X射线的波长不同。他把各种元素按所产生的特征X射线的波长排列后,发现其次序与元素周期表中的次序一致,他称这

X射线原理

X射线定义X射线是由于原子中的电子在能量相差悬殊的两个能级之间的跃迁而产生的粒子流,是波长介于紫外线和γ射线之间的电磁波。其波长很短约介于0.01~100埃之间。X射线具有很高的穿透本领,能透过许多对可见光不透明的物质,如墨纸、木料等。这种肉眼看不见的射线可以使很多固体材料发生可见的荧光,使照相底片

X射线治疗

  X射线应用于治疗[7],主要依据其生物效应,应用不同能量的X射线对人体病灶部分的细胞组织进行照射时,即可使被照射的细胞组织受到破坏或抑制,从而达到对某些疾病,特别是肿瘤的治疗目的。

浅析射线仪通过X射线/γ射线的探伤原理

  射线仪检测是利用X射线的穿透能力,在工业上一般用于检测一些眼睛所看不到的物品内部伤断,或电路的短路等。   γ射线有很强的穿透性,射线仪探伤就是利用γ射线得穿透性和直线性来探伤的方法。γ射线虽然不会像可见光那样凭肉眼就能直接察知,但它可使照相底片感光,也可用特殊的接收器来接收。

X射线与γ射线的相关介绍

  X射线是带电粒子与物质交互作用产生的高能光量子。  X射线与γ射线有许多类似的特性,但它们起源不同。  X射线由原子外部引起,而γ射线由原子内部引起。X射线比γ射线能量低,因此穿透力小于γ射线。成千上万台X射线机在日常中被运用于医学和工业上。X射线也被用于癌症治疗中破坏癌变细胞,由于它的广泛运用

X射线测厚仪与γ射线测厚仪比较

 X射线测厚仪与γ射线测厚仪比较  (1)物理特性  X射线束能缩减为很小的一点,其结构几何形状不受限制,而γ射线则不能做到,因此光子强度会急骤减少以致噪音大幅度增加。  (2)信号/噪音比  X射线测厚仪:X射线的高光子输出,能带来比γ射线在相同时间常数下约好10倍的噪音系数。  (3)反应时间 

X射线显微镜的探测器的介绍

  各种探测器都可用,如感光胶片、影像板(Image plate, IP)、影像增强器、半导体探测器(CCD,电荷偶合器) 等。当然,宏观用的和微观用的在结构和参数上是不同的。  X 射线显微镜可按使用的X 射线能量的高低分为软X 射线显微镜和硬X 射线显微镜。其构造基本相同,但研究对象有侧重。前者

“钙钛矿”探测器大幅减少X射线剂量

  记者近日从华中科技大学获悉,该校武汉光电国家实验室(筹)研发出一种新型钙钛矿辐射探测器,该探测器具有高灵敏度、无铅化特点,且其材料相比制造闪烁晶体所用的稀土材料更加低廉易制取,应用到医学和安检成像领域,可大幅减少X射线剂量对人体的伤害。  据介绍,钙钛矿材料,其实不含钙也不含钛,它是一类具有钙钛

关于X射线探测器的基本信息介绍

  X射线探测器主要是用于测量目标样品发出的X射线荧光,目前市场上已经有多种不同类型的X射线荧光分析探测器可用。能量色散X射线荧光光谱分析技术通常使用的为固态探测器,例如SI-PIN探测器或者硅漂移探测器(SSD)等。每种类型的探测器在不同的应用方面都具有不同的优劣势,因此并不存在最好与最差之分,只

X射线荧光光谱仪探测器简介

  X射线荧光光谱仪常用的探测器有流气正比计数器和闪烁计数器,流气正比计数器用于轻元素检测,闪烁计数器用于重元素检测。  流气正比计数器由金属圆筒(阴极)、金属丝(阳极)、窗口及探测气体(惰性气体)构成。阳极都制成均匀光滑的细丝线,一般由钨、钼、铂、金等稳定的金属丝制成。  流气正比计数器中一般选用