半导体X射线探测器相关介绍

半导体探测器是以半导体材料为探测介质的辐射探测器。锗和硅是我们最通用的半导体探测材料,其基本原理与气体电离室相类似。晶体计数器可以认为是半导体探测器的前身,20世纪初期人们发现在核辐射下可以通过某些固体电介质产生电导现象,在这之后金刚石、氯化银等晶体计数器又相继被人们发明。可是我们至今无法解决晶体极化效应的问题,所以目前可以达到实用水平的只有金刚石探测器。20世纪中期有人在使用α粒子照射锗半导体点接触型二极管时,发现有电脉冲输出。1958年第一个金硅面垒型探测器被设计完成,直到20世纪60年代初期锂漂移型探测器被研制成功后,半导体探测器才得到迅速的发展。 半导体探测器的工作原理如图4所示。将工作电压加在电极K和A上后,固体介质内部会形成很强的电场区。这时进入介质后的带电粒子,因为电离作用从而会产生电子——空穴对,并且在强电场作用下,电子和空穴将各自按照自身相反的电极方向迅速移动,并产生感应电荷,随之形成信号脉冲输出在负载R......阅读全文

半导体X射线探测器相关介绍

  半导体探测器是以半导体材料为探测介质的辐射探测器。锗和硅是我们最通用的半导体探测材料,其基本原理与气体电离室相类似。晶体计数器可以认为是半导体探测器的前身,20世纪初期人们发现在核辐射下可以通过某些固体电介质产生电导现象,在这之后金刚石、氯化银等晶体计数器又相继被人们发明。可是我们至今无法解决晶

X射线探测器的结构相关介绍

  CT机种的X射线探测器结构如图所示。位于管套中的真空管为旋转阳极式的射线管。管内设有阳极、阴极、灯丝和转子,在真空管外部对应阳极转子处设有定子线圈。定子线圈通入电流产生旋转磁场,在铜质的转子中产生。  一个典型的探测器包括:闪烁体、光电转换阵列和电子学部分。此外还有软件、电源等附件。目CT中常用

X射线探测器相关内容

  X射线探测器主要是用于测量目标样品发出的X射线荧光,目前市场上已经有多种不同类型的X射线荧光分析探测器可用。能量色散X射线荧光光谱分析技术通常使用的为固态探测器,例如SI-PIN探测器或者硅漂移探测器(SSD)等。每种类型的探测器在不同的应用方面都具有不同的优劣势,因此并不存在最好与最差之分,只

“新型CZT半导体X射线和γ射线探测器研制”专项通过验收

  科技部评估中心于2017年4月14日在北京组织了由我校主持完成的首批国家重大科学仪器设备开发专项“新型CZT半导体X射线和γ射线探测器研制”项目综合验收评审会。以中国工程院潘自强院士为验收专家组组长的13名评审专家对项目进行了严格审查,最终以97.4分顺利通过了项目综合验收。  该项目于2011

CdZnTe半导体探测器X射线能谱响应特性分析

CdZnTe是一种性能优异的高能射线探测材料,在空间科学、核安全以及核医学等众多领域有广泛的应用前景.本文选取了3枚不同等级的CdZnTe探测器,在详细阐述了CdZnTe探测器工作原理的基础上,对比分析了他们的能谱响应曲线和载流子输运特性的关系.重点分析了CdZnTe探测器能量分辨率、电荷收集效率和

X射线与γ射线的相关介绍

  X射线是带电粒子与物质交互作用产生的高能光量子。  X射线与γ射线有许多类似的特性,但它们起源不同。  X射线由原子外部引起,而γ射线由原子内部引起。X射线比γ射线能量低,因此穿透力小于γ射线。成千上万台X射线机在日常中被运用于医学和工业上。X射线也被用于癌症治疗中破坏癌变细胞,由于它的广泛运用

X射线探测器概述

  X射线探测器(X-raydetector)是CT成像的核心,将肉眼看不到的“X射线”转换为最终能转变为图像的“数字化信号”。  x射线探测器是一种将X射线能量转换为可供记录的 电信号的装置。它接收到射线照射,然后产生与辐射强度成正比的电信号。 通常探测器所接受到的射线信号的强弱,取决于该部位的人

关于闪烁X射线探测器的介绍

  在介绍闪烁探测器之前,必须先了解光脉冲,当闪烁物质受到放射线或其他高能粒子辐照时会激发阻止介质原子,被激发的原子由激发态退激回到基态时会形成荧光脉冲[7]。闪烁探测器正是利用某些物质在核辐射的作用下会发光的这一特性工作的。闪烁探测器主要是由被封闭在一个不透明的外壳里的闪烁体、接收光的收集系统、光

X射线衍射仪的的X射线探测器和控制装置介绍

  (1)X射线探测器 —— 测量X射线强度的计数装置;  计数器的主要功能是将X射线光子的能量转换成电脉冲信号。通常用于X射线衍射仪的辐射探测器有正比计数器、闪烁计数器和位敏正比探测器。  (2)X射线系统控制装置 —— 数据采集系统和各种电气系统、保护系统。  X射线能对人体组织造成伤害,在自己

γ射线料位计的探测器相关介绍

  探测器也称探头、接收器,主要用于探测射线,并将射线产生的光信号转化为电信号。主流探测器内部主要元器件为:闪烁晶体、光电倍增管、前置电路。也有电离室探测器和计数管探测器,探测效率比较低,市场使用率很小。  射线照射到闪烁晶体上,会产生光子,光子与光电倍增管表面涂的光感材料(称为光阴级)撞击,光子的

气体X射线探测器简介

  气体探测器均以气体作为探测介质,内部多充有以多种惰性气体为主混合气体,并在探测器两极加上电压小室。其小室的形状大小结构因气体探测器的不同会有加大差别。在探测器使用时我们多将内部气体大气压加至2到3个大气压,这样可以有效提高气体探测器的探测效率。气体探测器的工作原理是通过收集电离电荷获取核辐射信息

关于X-射线荧光仪探测器的介绍

   流(充)气正比计数器和闪烁计数器用于探测不同的元素,其中充气正比计数器一般是填充 Ar、Kr 等惰性气体;一定要注意此类计数器头部玻璃很容易破碎,不能碰撞;长期使用后,充气正比计数器头部容易吸附灰尘影响计数,应该定期清理。流气正比计数器是让探测器气体流动,一般是用1 μm~6 μm 厚的聚丙烯

X射线荧光分析的相关介绍

  确定物质中微量元素的种类和含量的一种方法。它用外界辐射激发待分析样品中的原子,使原子发出标识X射线(荧光),通过测量这些标识X射线的能量和强度来确定物质中微量元素的种类和含量。根据激发源的不同,可分成带电粒子激发X荧光分析,电磁辐射激发X荧光分析和电子激发X荧光分析。

X射线荧光分析技术相关介绍

  X光荧光分析又称X射线荧光分析(XRF)技术,即是利用初级X射线光子或其他微观粒子激发待测样品中的原子,使之产生荧光(次级X射线)而进行物质成分分析和化学形态研究的方法。  X射线是一种电磁辐射,按传统的说法,其波长介于紫外线和γ射线之间,但随着高能电子加速器的发展,电子轫致辐射所产生的X射线的

X射线的物理效应相关介绍

  (1)穿透作用。X射线因其波长短,能量大,照在物质上时,仅一部分被物质所吸收,大部分经由原子间隙而透过,表现出很强的穿透能力。X射线穿透物质的能力与X射线光子的能量有关,X射线的波长越短,光子的能量越大,穿透力越强。X射线的穿透力也与物质密度有关,利用差别吸收这种性质可以把密度不同的物质区分开来

X射线荧光仪的相关介绍

  X射线荧光仪一般是采用,激发样品中的目标元素,使之产生特征X射线,通过测量特征X射线的照射量率来确定目标元素及其含量的仪器。  仪器分为室内分析、野外便携式和X射线荧光测井仪三种类型。各种类型的仪器均由探测器和操作台两部分组成。由于目前使用的探测器(正比计数管及闪烁计数器)能量分辨率不高,不能区

新型柔性X射线探测器面世

原文地址:http://news.sciencenet.cn/htmlnews/2023/11/511891.shtm 研究人员手持新探测器。图片来源:萨里大学科技日报北京11月7日电 (记者刘霞)英国科学家开发出一种有机半导体材料,并利用其研制出一款新型柔性X射线探测器。这种探测器不仅“身

X射线探测器的发展简介

  增大z轴的覆盖宽度  从发展的角度看,希望X射线管旋转一周就能获得更多的层面,即可完成一个脏器的扫描,实现所谓的容积扫描(Volume Scan)。为此势必要增大探测z轴的覆盖宽度,要想延长z轴的覆盖宽度,不仅取决于增加探测器的排数,建立更多的数据采集通道同样非常重要,这样才能既保证Z轴的覆盖宽

X射线显微镜的探测器的介绍

  各种探测器都可用,如感光胶片、影像板(Image plate, IP)、影像增强器、半导体探测器(CCD,电荷偶合器) 等。当然,宏观用的和微观用的在结构和参数上是不同的。  X 射线显微镜可按使用的X 射线能量的高低分为软X 射线显微镜和硬X 射线显微镜。其构造基本相同,但研究对象有侧重。前者

关于X射线探测器的基本信息介绍

  X射线探测器主要是用于测量目标样品发出的X射线荧光,目前市场上已经有多种不同类型的X射线荧光分析探测器可用。能量色散X射线荧光光谱分析技术通常使用的为固态探测器,例如SI-PIN探测器或者硅漂移探测器(SSD)等。每种类型的探测器在不同的应用方面都具有不同的优劣势,因此并不存在最好与最差之分,只

放射型X射线源的相关介绍

  放射型X射线源通常较为简便、体积较小,成本较低;但是,这种放射源不能被关闭,并且会对环境、使用者等造成一定的危害,因此,对于这种类型的X射线源的使用需要进行注册登记,同时对其运输和处理都具有一定的限制,此外,人们还需要对这种放射源进行定期测试。

X射线荧光分析技术的相关介绍

  X射线荧光分析是确定物质中微量元素的种类和含量的一种方法。  X射线荧光分析又称X射线次级发射光谱分析。本法系利用原级X射线光子或其它微观粒子激发待测物质中的原子,使之产生次级的特征X射线(X光荧光)而进行物质成分分析和化学态研究的方法。1948年由H.费里德曼(H.Friedmann)和L.S

X射线荧光法的相关介绍

  X射线荧光法是用,照射待测样品,使受激元素产生二次特征X射线(即荧光),使用X射线荧光仪测量并记录样品中待测元素的特征X射线照射量率,从而确定样品的成分和目标元素含量的方法。  方法的特点是操作简单,速度快,可以进行原位测量,在现场获得目标元素的含量;划分矿与非矿的界限,代替或部分代替刻槽取样。

关于X射线的产生相关介绍

  高速电子轰击靶时,与靶物质的相互作用过程是很复杂的。一些高速电子进入到靶物质原子核附近,在原子核的强电场作用下,速度的量值和方向都发生变化,一部分动能转化为X光子的能量(hv)辐射出去。这种辐射称为轫致辐射( bremsstrahlung)。一些高速电子进入靶物质原子内部,如果与某个原子的内层电

X射线荧光的产生相关介绍

  当一束粒子如X射线光子与一种物质的原子相互作用时,在其能量大于原子某一轨道电子的结合能时,就可从中逐出一个轨道电子而出现一个“空穴”,层中的这个“空穴”可称作空位。原子要恢复到原来的稳定状态,这时处于较高能级的电子将依据一定的规则跃迁而填补该“空穴”,这一过程将使整个原子的能量降低,因此可以自发

x射线衍射仪的应用相关介绍

  油田录井  Olympus便携式X 射线衍射仪BTX可能直接分析出岩石的矿物组成及相对含量,并形成了定性、定量的岩性识别方法,为录井随钻岩性快速识别、建立地质剖面提供了技术保障。  每种矿物都具有其特定的X 射线衍射图谱,样品中某种矿物含量与其衍射峰和强度成正相关关系。在混合物中,一种物质成分的

多能混合像素光子计数X射线探测器

  我们一直持续致力于不断的探索研究去突破技术壁垒,以获得更为高效的测试过程及测试装置,使测试性能趋于完美。目前我们在同步仪器及科学研究领域所取得的巨大成就已充分证明了这一点。      新型的EIGER X 系列探测器可以为要求极为苛刻的同步应用提供好的探测性能。具有连续读数能力的千赫兹帧速率的成

简介闪烁X射线探测器的工作原理

  闪烁探测器的工作原理是:放射线入射到闪烁体后发出荧光;荧光光子被收集到光电倍增管的光阴极,通过光电效应转换出光电子;光电子通过电子运动并在光电倍增管各级间倍增,最后在阳极输出回路输出信号。闪烁探测器的探测动态范围很宽,对能量在1eV到1GeV范围内的辐射粒子都适用[8],如今己成为最常用的探测器

X射线探测器的基本参数

  能量—电荷系数  X射线在介质物质中平均得到的电荷(N)与损耗的能量(E)的比值,被我们称为能量—电荷转换系数。由于能量—电荷转换具有统计性,所以一般表示为平均值。  能量分辨率  X射线探测器中最为重要的系统参数便是能量分辨率,能量分辨率反映了探测器对不同类型的入射粒子的能量分辨能力。能量分辨

X射线荧光的简介和相关仪器介绍

  通常把X射线照射在物质上而产生的次级X射线叫做X射线荧光(X-Ray Fluorescence),而把用来照射的X射线称为原级X射线,所以X射线荧光光谱仪仍然属于X射线范畴。一台典型的X射线荧光光谱仪主要由激发源(X射线管)和探测系统构成。X射线管主要负责产生入射X射线(一次X射线),随后该射线