仙后座A放射性同位素分布“重现”
日本理化学研究所的一个国际联合研究小组利用最新计算机模拟,成功再现了大约340年前爆发的超新星残骸仙后座A中钛和镍的放射性同位素空间分布。由于这种分布能直接反映中子星爆炸的情况,有助于解开“超新星爆发”之谜。 质量超出太阳8倍以上的大质量星诞生之后,经过数百万年稳定进化,星体中心大部分由铁形成核。核的质量超过太阳质量1.5倍后,就会由其自身重力作用发生塌缩,形成半径约10公里的“中子星”。诞生初期的中子星密度大于原子核,温度可达到5000亿摄氏度,产生大量质量近乎为零的基本粒子中微子。 引发超新星爆发的物理过程是50年来的未解之谜。关于爆发机理最有力的一种学说认为,热中子星内部释放的中微子的一部分被周围气体吸收,使气体被加热。通过“中微子加热”气体出现激烈运动,就如烧开的水壶盖子被喷飞一样,激烈的气体“泡”引发了超新星爆发。 此时释放出的热物质中,有合成的钛与镍的放射性同位素钛44(质子数22、中子数22)和镍56(质......阅读全文
仙后座A放射性同位素分布“重现”
日本理化学研究所的一个国际联合研究小组利用最新计算机模拟,成功再现了大约340年前爆发的超新星残骸仙后座A中钛和镍的放射性同位素空间分布。由于这种分布能直接反映中子星爆炸的情况,有助于解开“超新星爆发”之谜。 质量超出太阳8倍以上的大质量星诞生之后,经过数百万年稳定进化,星体中心大部分由铁形成
放射性同位素概述
一、放射性同位素的特点众所周知,放射性同位素(radiosotlope)是不稳定的,它会“变”。放射性同位 素的原子核很不稳定,会不间断地、自发地放射出射线,直至变成另一种稳定同位 素,这就是所谓“核衰变”。放射性同位素在进行核衰变的时候,可放射出α射线、 β射线、γ射线和电子俘获等,但
放射性同位素概述
一、放射性同位素的特点 众所周知,放射性同位素(radiosotlope)是不稳定的,它会“变”。放射性同位 素的原子核很不稳定,会不间断地、自发地放射出射线,直至变成另一种稳定同位 素,这就是所谓“核衰变”。放射性同位素在进行核衰变的时候,可放射出α射线、 β射线、γ射线和电子俘获等,但是放射性
放射性同位素的定义及放射性同位素技术的应用
原子有稳定和不稳定两种。不稳定的原子除天然元素外,主要由核裂变或核聚变程中产生碎片形成。这些不稳定的元素在放出α、β、γ等射线后,会转变成稳定的原子。这种不稳定的元素就称为放射性同位素。根据放射性同位素衰变过程放出的射线(或称辐射)的不同,放射性衰变有α、β、γ衰变三大类。放射性同位素技术已经广泛用
放射性同位素使用规则
RULES FOR THE USE OF RADIOACTIVITY You must be certified by EHS before you can use radioactivity. The guiding principle isCOMMON SENSE. I take radio
放射性同位素衰变定律
放射性同位素衰变不受任何外界条件的影响,并以其固有的速度进行。不同放射性同位素衰变速度不一,但最终都变成稳定同位素。放射性同位素衰变速率(dN/dt)与现有母体原子数(N)成正比。其表达式则为dN/dt∝N等式可写成:同位素地球化学式中:λ为衰变常数,代表单位时间内母体原子的衰变几率;“-”表示母体
什么是放射性同位素
如果两个原子质子数目相同,但中子数目不同,则他们仍有相同的原子序,在周期表是同一位置的元素,所以两者就叫同位素。有放射性的同位素称为“放射性同位素”,没有放射性的则称为“稳定同位素”,并不是所有同位素都具有放射性。放射性同位素(radiosotlope)是不稳定的,它会“变”。放射性同位素的原子核很
放射性同位素的定义
元素的原子由原子核和电子构成,而原子核又由质子和中子组成。同种元素具有相同的质子数,但可以有不同的中子数,这种具有相同的质子数而具有不同的中子数的元素叫同位素。其中有一些同位素的原子核能自发地发射出粒子或射线,释放出一定的能量,同时质子数或中子数发生变化,从而转变成另一种元素的原子核。元素的这种特性
放射性同位素的应用同位素示踪法(三)
(二)正式实验阶段 1.选择放射性同位素的剂量 同位素必须能经得起稀释,使其最后样品的放射性不能低于本底,一般来说放射性同位素在生物体内不是完全均匀地被稀释,可能在某些器官、组织、细胞、某些分子中有选择性地蓄积,蓄积的部分放射性就会很强,在这种情况下,应以相关部位对示踪剂的蓄积率来考虑示踪剂用量
放射性同位素的应用同位素示踪法(二)
二、示踪实验的设计原则 设计一个放射性同位素的示踪实验应从实验的目的性,实验所具备的条件和对放射性的防护水平三方面着手考虑。原则上必须从两个主要方面来设计放射性示踪实验:一是必须寻求有效的、可重复的测定放射性强度的条件,二是必须选择一个合适的比活度λqδ(单位是原子/时间/分子,dpm/mol或
放射性同位素的应用同位素示踪法(一)
放射性同位素的应用-同位素示踪法 同位素示踪法(isotopic tracer method)是利用放射性核素作为示踪剂对研究对象进行标记的微量分析方法,示踪实验的创建者是Hevesy。Hevesy于1923年首先用天然放射性212Pb研究铅盐在豆科植物内的分布和转移。继后Jolit和Curie
关于放射性同位素的放射性射线的主要应用
(l)射线探测。将丫射线透过样品,若样品中有砂眼或裂痕,则射线在该处的吸收就减小,因此在样品后面放上照相底片,显影后的底片上将留下相应的痕迹。另外,射线通过物质时都按照一定的规律被物质吸收或散射,这样就可测量物体的密度及厚度等。在石油勘探方面,应用丫射线等可研究地层的性质,求出泥质含量,区分岩性
放射性同位素的相关介绍
元素的原子由原子核和电子构成,而原子核又由质子和中子组成。同种元素具有相同的质子数,但可以有不同的中子数,这种具有相同的质子数而具有不同的中子数的元素叫同位素。其中有一些同位素的原子核能自发地发射出粒子或射线,释放出一定的能量,同时质子数或中子数发生变化,从而转变成另一种元素的原子核。元素的这种
μ中微子“变身”τ中微子直接证据找到
意大利格兰·萨索国家实验室的OPERA(采用乳胶径迹装置的振荡实验项目)实验组表示,他们首次捕获到了μ中微子“变身”为τ中微子的直接证据。 2011年9月,OPERA实验组宣布,发现中微子的行进速度超过了光速。此言一出,引发公众一片哗然,因为这显然违背了爱因斯坦的狭义相对论。实验组随后在测量中
放射性同位素的概念和应用
原子有稳定和不稳定两种。不稳定的原子除天然元素外,主要由核裂变或核聚变程中产生碎片形成。这些不稳定的元素在放出α、β、γ等射线后,会转变成稳定的原子。这种不稳定的元素就称为放射性同位素。根据放射性同位素衰变过程放出的射线(或称辐射)的不同,放射性衰变有α、β、γ衰变三大类。放射性同位素技术已经广泛用
放射性同位素技术的应用介绍
放射性同位素技术已广泛应用于国民经济的许多领域,在工业、农业、医学、资源环境、军事科研诸多领域的应用已获得了显著的经济效益、社会效益、环境效益,也是核能利用的重要方面之一。
放射性同位素热电机的介绍
放射性同位素热电机(Radioisotope Thermoelectric Generator,缩写RTG、RITEG)是一种利用放射性衰变获得能量的发电机。 此装置利用热电偶阵列(应用了西贝克效应)接收了一些合适的放射性物质在衰变时所放出热量再将其转成电能。
概述放射性同位素的衰变规律
放射性元素最基本的特征是不断发生同位素衰变,而衰变的结果是放射性同位素母体的数目不断减少,但其子体的原子数目将不断增加。由于放射性同位素的衰变不受外界温度、压力或化学条件控制,其衰变速率的大小完全是每种放射性元素的固有特性,发生衰变的原子数目仅与时间有关如果起始时刻放射性元素母体的数目为N,经过
锗探测器阵列完成首次无背景干扰搜索
英国《自然》杂志发表了一项粒子物理学重大突破:锗探测器阵列(GERDA)实验的物理学家完成了首次无背景干扰搜索,但未发现“无中微子双β衰变”迹象。“无中微子双β衰变”是一种放射性衰变,如果被发现存在,将证明中微子是其自身的反粒子,从而结束粒子物理学界长期争论的一个议题。 一些粒子物理学经典模型
什么是放射性同位素标记法
简单的说,就是用放射性元素标记分子,然后观测这个分子在代谢和生命活动中的变化。因为只有标记了放射性,这些分子才能被观测到。
什么是放射性同位素标记法
3H标记亮氨酸追踪分泌蛋白的合成与分泌过程,首先出现在核糖体--内质网--高尔基体---细胞膜18O标记水和二氧化碳中的氧原子,明确光合作用的氧气中的氧全部来自于水.14C 标记二氧化碳,光合作用的暗反应过程(卡尔文循环)碳原子转移途径.CO2--C3--(CH2O)15N标记脱氧核苷酸,DNA的半
放射性同位素示踪原子的应用介绍
将一种稳定的化学元素和它的具有放射性的同位素混合在一起,当它们参与各种系统的运动和变化时,由于放射性同位素能发出射线,测量这些射线便可确定其位置与数量。只要测出了放射性同位素的分布和动向,就能确定稳定化学元素的各种作用。这种方法称为示踪原子方法,应用很广泛。 (1)在石油工业上的应用。将含放射
放射性同位素的衰变类型的介绍
(1)α衰变:放射性元素自发地释放出α粒子的衰变过程叫α 衰变。α粒子质量数为4,由2个质子和2个中子组成,是原子序数为2的高速运动的氦原子。高速运动着的α 粒子流就是α 射线。经过α衰变形成的放射性元素与其母体相比质量数减4,原子序数降低2位。其衰变过程如下: 例如,铀-238经α衰变后生成
半数地热来自放射性物质衰变
据美国物理学家组织网7月17日报道,一个以日本东北大学为主的研究小组利用位于日本中部岐阜县地下千米处的装置KamLAND,根据多年观测数据重新计算了地球内部放射性元素产生的热量。研究发现,地球自身热量大约有一半来自放射性物质衰变,另一半则是从地球刚形成时保存至今的原始热量。新数据不
法公司用放射性铅同位素治疗癌症获突破
法国核能技术公司阿海珐集团旗下的医药公司近日宣布在抗癌放射疗法研究方面取得阶段性突破,其正在研发的抗癌新“武器”——放射性同位素铅-212,具有可靶向杀死癌细胞的功效。 研究人员透露,该放射性同位素以化学方式与抗体结合,通过抗体找到位于肿瘤组织的抗原,继而精准杀灭癌细胞。整个治疗过程仅需1
关于放射性同位素密度计的简介
放射性同位素密度计仪器内设有放射性同位素辐射源。它的放射性辐射(例如γ射线),在透过一定厚度的被测样品后被射线检测器所接收。一定厚度的样品对射线的吸收量与该样品的密度有关,而射线检测器的信号则与该吸收量有关,因此反映出样品的密度。
江门中微子专项:撑起中微子研究的新辉煌
熟悉中国科学院先导专项的人都知道,自2011年起,中科院组织实施了战略性先导科技专项,并把它分成了A、B两类,A类侧重于前瞻战略科技,B类侧重于基础与交叉前沿方向布局。 不过,细心的人会发现,在A类先导专项的名单里,有一个特殊的条目——“江门中微子实验”。与所有其他专项都不同,“江门中微子实
放射性元素有哪些类型?
放射性有天然放射性和人工放射性之分。天然放射性是指天然存在的放射性核素所具有的放射性。它们大多属于由重元素组成的三个放射系(即钍系、铀系和锕系)。人工放射性是指用核反应的办法所获得的放射性。人工放射性最早是在1934年由法国科学家约里奥-居里夫妇发现的(见人工放射性核素)。我们知道,许多天然和人工生
放射性硫同位素示踪太阳活动研究获进展
太阳是太阳系的主要能量来源,控制着地球的气候和水文系统,从而维持地球表生环境的生命活动和宜居性。重建过去的太阳活动历史,对评估异常太阳活动的强度和频率,预测其对宇航员、现代科技通讯和生态系统的影响均有重要意义。高能宇宙射线轰击地球大气可以产生放射性同位素(又称宇生核素,如碳14、铍10等),这些宇
放射性同位素与射线装置的防护措施
1.放射性同位素与射线装置使用场所必须设置防护设施。其入口处必须设置放射性标志和必要的防护安全连锁、报警装置或工作信号。 2.单位必须设专人对放射源和射线装置进行管理,定期检查、维修并做书面记录。放射源和仪器、设备发生故障时,应由专人处理。 3.放射性同位素与射线装置的使用单位必须严格按照安全操作规