上海药物所等优化新型药物载体材料

中国科学院上海药物研究所研究员张继稳领衔中法合作团队发明了一种快速、温和的方法,显著改善环糊精金属有机骨架(CD-MOFs)在水中的稳定性,克服了CD-MOFs在水中稳定性差的缺点,拓展了CD-MOFs在医药领域的应用前景。该研究成果于7月26日发表于《化学通讯》(ChemComm)上。 金属有机骨架(MOFs)作为新的“明星”材料,迅速成为科学家的研究热点。以环糊精为有机配体、钾离子为无机金属中心形成的CD-MOFs,是安全性高的新型药物载体,其微粒尺寸可控、功能多样,具有良好的生物相容性,在药物输送领域具有重要的应用价值。但CD-MOFs遇水迅速崩解,限制了它的应用。现有的增加CD-MOFs在水中稳定性的策略反应耗时长,并降低CD-MOFs的载药能力。因此,合成稳定的多孔性CD-MOFs材料仍然是一个巨大的挑战。 由上海药物所、法国Paris-sud大学、吉林大学、中山大学组成的合作团队采用简单高效的方法将胆固醇分子......阅读全文

什么是环糊精?

  环糊精(Cyclodextrin,简称CD)是直链淀粉在由芽孢杆菌产生的环糊精葡萄糖基转移酶作用下生成的一系列环状低聚糖的总称,通常含有6~12个D-吡喃葡萄糖单元。其中研究得较多并且具有重要实际意义的是含有6、7、8个葡萄糖单元的分子,分别称为alpha -、beta -和gama -环糊精。

环糊精的应用介绍

医药业环糊精能有效地增加一些水溶性不良的药物在水中的溶解度和溶解速度,如前列腺素-CD包合物能增加主药的溶解度从而制成注射剂。它还能提高药物(如肠康颗粒挥发油)的稳定性和生物利用度;减少药物(如穿心莲)的不良气味或苦味;降低药物(如双氯芬酸钠)的刺激和毒副作用;以及使药物(如盐酸小檗碱)缓释和改善剂

环糊精的物理特性

中文名环糊精外文名Cyclodextrin简    称CD亲水性外缘亲水而内腔疏水类    别蒽醌类有机化学物结    构多分子以α-1,4-糖苷键首尾相连稳定性碱性介质中稳定,强酸中可裂解吸湿性无

环糊精的结构特点

环糊精分子具有略呈锥形的中空圆筒立体环状结构,在其空洞结构中,外侧上端(较大开口端)由C2和C3的仲羟基构成,下端(较小开口端)由C6的伯羟基构成,具有亲水性,而空腔内由于受到C-H键的屏蔽作用形成了疏水区。既无还原端也无非还原端,没有还原性;在碱性介质中很稳定,但强酸可以使之裂解;只能被α-淀粉酶

环糊精的基本信息

环糊精(Cyclodextrin,简称CD)是直链淀粉在由芽孢杆菌产生的环糊精葡萄糖基转移酶作用下生成的一系列环状低聚糖的总称,通常含有6~12个D-吡喃葡萄糖单元。其中研究得较多并且具有重要实际意义的是含有6、7、8个葡萄糖单元的分子,分别称为alpha -、beta -和gama -环糊精。根据

关于环糊精的研究介绍

  环糊精的基础研究早在30年代开始,并证实了环糊精能形成包埋复合物,但直到二十世纪五十年代环糊精包埋复合物的研究才趋于成熟,并且发现环糊精在一些反应中具有催化作用。1950年以来,对环糊精生成酶、制取方法、环糊精的物理化学性质和研究逐渐增多,提出了许多新见解。特别是F. Cramer 首先阐明了环

关于环糊精的结构介绍

  环糊精分子具有略呈锥形的中空圆筒立体环状结构,在其空洞结构中,外侧上端(较大开口端)由C2和C3的仲羟基构成,下端(较小开口端)由C6的伯羟基构成,具有亲水性,而空腔内由于受到C-H键的屏蔽作用形成了疏水区。既无还原端也无非还原端,没有还原性;在碱性介质中很稳定,但强酸可以使之裂解;只能被α-淀

欧盟为α环糊精颁发健康许可

  近日,欧盟委员会证实α-环糊精具有确凿的保健功效,并为其颁发了健康声明许可。今后,食品生产商在使用α-环糊精作为膳食纤维时,有权在产品的包装上标示这种产品具有降血糖功效。全球环糊精市场的领先企业德国瓦克化学公司,将据此进一步扩大在功能性食品领域的产品组合。   α-环糊精是一种从可再生原料玉米

环糊精的基本信息介绍

  环糊精是环糊精转葡萄糖基酶(CGTase)作用于淀粉的产物,是由六个以上葡萄糖以α—1,4—糖苷键连结的环状寡聚糖,其中最常见、研究最多的是α-环糊精(α-cyclodextrin)、β-环糊精(β-cyclodextrin)、γ-环糊精(γ-cyclodextrin),分别由六个、七个和八个葡

环糊精的改性的问题介绍

  由于α-CD分子空洞孔隙较小,通常只能包接较小分子的客体物质,应用范围较小;γ-CD的分子洞大,但其生产成本高,工业上不能大量生产,其应用受到限制;β-CD的分子洞适中,应用范围广,生产成本低,是工业上使用最多的环糊精产品。但β-CD的疏水区域及催化活性有限,使其在应用上受到一定限制。为了克服环

手性色谱柱——环糊精型

   环糊精是通过Bacillus Macerans 淀粉酶或环糊精糖基转移酶水解淀粉得到的环型低聚糖。通过控制环糊精转移酶的水解反应条件可得到不同尺寸的环糊精。市售的环糊精主要是α、β、γ三种类型,分别含6、7、8个吡喃葡萄糖单元。环糊精分子成锥筒型,构成一个洞穴,洞穴的孔径由构成环糊精的吡喃葡萄

环糊精在医药业的应用介绍

  环糊精能有效地增加一些水溶性不良的药物在水中的溶解度和溶解速度,如前列腺素-CD包合物能增加主药的溶解度从而制成注射剂。它还能提高药物(如肠康颗粒挥发油)的稳定性和生物利用度;减少药物(如穿心莲)的不良气味或苦味;降低药物(如双氯芬酸钠)的刺激和毒副作用;以及使药物(如盐酸小檗碱)缓释和改善剂型

环糊精有望治疗动脉粥样硬化

  德国等国研究人员6日在美国《科学转化医学》杂志上报告说,环状低聚糖——环糊精可起到阻止甚至减少胆固醇结晶沉积的作用,有望用于治疗动脉粥样硬化。   动脉粥样硬化是指动脉壁上沉积一层包括胆固醇结晶在内的粥样物质,使动脉弹性降低、管腔变窄,常导致心肌梗塞、中风等致命疾病发生。胆固醇结晶会引发免疫反应

环糊精的分析化学的相关介绍

  环糊精是手性化合物,它对有机分子有进行识别和选择的能力,已成功地应用于各种色谱与电泳方法中,以分离各种异构体和对映体。环糊精在电化学分析中能改善体系的选择性。  的空腔分子囊结构在分析化学上也得到了广泛的应用。如在微量元素测定方面就一二嗅乙烷悬浊液及清液使唆琳及异哇咐在室温发磷光或荧光。又如,

研究利用环糊精等制备出超分子玻璃

湖南大学、中国农业科学院麻类研究所、中南大学等单位合作,利用环糊精等为原料,基于低共熔策略制备了超分子玻璃。近日,相关研究成果在线发表于Nature Communications上。超分子玻璃制备过程。受访者 供图透明材料的发展在工业生产和科学探索中都至关重要,而有机玻璃和无机玻璃是两种典型的透明材

关于环糊精在食品行业的应用介绍

  由于的独特分子囊结构,近年来在食品领域中 ,也得到广泛的开拓与应用。在将液体形式的食品,,转化为固体状态的食品中,就有所应用。如,有的速溶茶, 就是将浓茶叶汁吸收入 的分子囊中, 制成固体颗粒状态的速溶茶。也有人利用的包结性, 制成包结洋葱汁的粉剂,用于方便而、罗松汤、色拉、肉汁等食品中。在保持

主体分子β环糊精(βCD)与客体分子cinnarizine的对接研究

  1.项目说明   研究主体分子β-环糊精(β-CD)与客体分子cinnarizine的结合模式、相互作用力和结合位点。   图1.cinnarizine   2.计算方法   从Crystallography Open Database(http://www.crystallograp

主体分子β环糊精(βCD)与客体分子cinnarizine的对接研究

1.项目说明研究主体分子β-环糊精(β-CD)与客体分子cinnarizine的结合模式、相互作用力和结合位点。图1.cinnarizine2.计算方法从Crystallography Open Database(http://www.crystallography.net/) 下载β-环糊精(CO

基于环糊精主客体识别的自组装纳米材料研究综述

  中国科学院成都生物研究所高分子自组装课题组长期致力于基于环糊精主客体识别的自组装纳米材料研究,在近年来取得了一系列引人注目的科研成果并引起了国内外同行的广泛关注。应自组装领域专家Prof. Feihe Huang (Zhejiang University, China)、Steven Zimme

羟丙基倍他环糊精等国家药用辅料标准修订草案公示

  国家药典委员会拟修订羟丙基倍他环糊精、甘油、甘油(供注射用)国家药用辅料标准,为确保标准的科学性、合理性和适用性, 现第二次公示征求社会各界意见。公示期为一个月。请相关单位认真研核,若有异议,请及时来函提交反馈意见,并附相关说明、实验数据和联系方式。 来函需加盖公章,收文单位为“国家药典委员会办

八(6溴6脱氧)GAMMA环糊精使用说明

文件名称Subject红外光谱IR产品名称八(6-溴-6-去氧)伽马环糊精Product NameOctakis-(6-Bromo-6-Deoxy)-γ-Cyclodextrin CAS No.:53784-84-2批号Batch No:20180115共 4 页之第 1页Page 1 of 4文件

《色谱》期刊:基于环糊精的农药吸附剂的研究进展

  色谱, 2021, 39(2): 173-183  DOI: 10.3724/SP.J.1123.2020.08018  专论与综述  基于环糊精的农药吸附剂的研究进展  张金凤, 李萍, 马玖彤, 贾琼*贾琼《色谱》青年编委  个人简介  吉林大学化学学院教授,博士生导师。2003年博士毕业于

我国科研团队在环糊精聚合物研究领域取得新进展

6月22日记者从海南大学获悉,该校化学化工学院高助威团队在环糊精聚合物研究领域取得新进展。团队系统阐明了环糊精聚合物的多元合成方法,为其在食品、环境和生物分析中的高效应用提供了理论支撑。相关成果近期发表于材料科学期刊《今日材料》。在分析化学领域,样品预处理是精准检测的关键环节,但当前普遍存在样品基质

Science子刊:改性环糊精分子可作为广谱杀病毒药物

  在一项新的研究中,来自瑞士、加拿大、英国和美国的研究人员开发出用糖分子制成的新型抗病毒物质,它们可以在接触时消灭病毒,并且可能有助于抵抗病毒性流行病爆发。他们发现它们有望用于治疗单纯疱疹病毒(HSV)、呼吸道合胞病毒(RSV)、丙型肝炎病毒(HCV)和寨卡病毒(ZIKV)等病毒感染。相关研究结果

评价(2羟丙基)b环糊精对盐酸雷尼替丁味觉掩蔽作用

        口味评估在配方开发中越来越重要,特别是对儿科药物。在使用更昂贵的人体模型或动物模型之前,电子味觉传感系统有潜力提供一种快速、客观和安全的味觉评估方法。在本研究中,我们评估了TS-5000Z味觉传感系统评价(2-羟丙基)-b-环糊精(HP-b-CyD)配合物与盐酸雷尼替J (ranit

环糊精金属有机骨架制备抗菌和伤口修复的超细银纳米粒

  控制细菌感染是创伤治疗过程中的首要挑战。银纳米粒(Ag NPs)能够有效地控制创伤处细菌的生长,因此提高Ag NPs等抗菌药的活性、采用止血和抗菌双重治疗策略,不仅可避免抗生素的滥用,还可满足医学领域的大量需求。但常规负载方法得到的Ag NPs尺寸偏大,物理稳定性较差,极易发生聚集、结块,限制了

环糊精金属有机骨架制备抗菌和伤口修复的超细银纳米粒

  控制细菌感染是创伤治疗过程中的首要挑战。银纳米粒(Ag NPs)能够有效地控制创伤处细菌的生长,因此提高Ag NPs等抗菌药的活性、采用止血和抗菌双重治疗策略,不仅可避免抗生素的滥用,还可满足医学领域的大量需求。但常规负载方法得到的Ag NPs尺寸偏大,物理稳定性较差,极易发生聚集、结块,限制了

关于蛋白质复性的研究介绍

  环糊精与直链糊精辅助蛋白质复性的研究  1995年,Karuppiah 和Sharma发表文章,介绍了使用环糊精辅助碳酸酐酶B的复性[9]。环糊精由淀粉通过环糊精葡萄糖基转移酶降解制得,是由D-吡喃葡萄糖单元以α-1,4-糖苷键相互结合成互为椅式构象的环状低聚糖,其分子通常含有6~12个吡喃葡萄

麻黄碱和伪麻黄碱的毛细管电泳分离研究

  目的  建立毛细管电泳分离麻黄碱与伪麻黄碱的方法。  方法  分别以甲基化-β-环糊精和羟丙基-β-环糊精为添加剂,采用毛细管电泳法分离麻黄碱和伪麻黄碱。考察添加剂的种类和浓度、缓冲溶液的浓度和pH值、运行电压、有机溶剂对麻黄碱和伪麻黄碱分离的影响。  结果  采用甲基化-β-环糊精和羟丙基-β

气相色谱仪的形成包合物的手性固定液

在气相色谱仪的形成包合物的手性固定液中,环糊精、冠醚和杯芳烃是近几年发展起来的高选择性手性固定液。由于它们都具有独特的环腔结构,所以是色谱分析中超分子化学理论的主要研究对象。一、环糊精:环糊精固定液主要是a-、b-、g-环糊精的烷基化或酰基化衍生物,具有许多手性中心和特殊的笼状结构,能与被分析的化合