Antpedia LOGO WIKI资讯

宁波材料所在高比能锂金属负极保护方面取得系列进展

锂金属作为锂二次电池的“圣杯”负极材料,具有3860毫安时/克的高比容量以及最低的氧化还原电位,既可以被应用于锂空气、锂硫等高能量密度体系中,也可以与锂离子正极材料配对实现二次电池能量密度的大幅度提升。然而,受制于锂金属沉积过程中的不规则枝晶生长以及锂金属与电解液的不可逆反应,锂金属负极在循环过程中会形成极度不稳定的电极/电解液界面,快速损耗电池容量和增加电池内阻,导致锂金属负极在电池中的实际应用依然受到诸多挑战。 针对锂金属界面不稳定的顽疾,中国科学院波材料技术与工程研究所新型储能材料与器件团队进行了一系列的界面多孔结构设计,通过空间限域方式抑制锂金属电极不规则的表面体积膨胀,减轻沉积锂金属对其界面钝化层的机械压力,从而改善了锂金属界面SEI膜易破损的问题,并实现了锂金属负极库伦效率及循环寿命的显著提升(图1)。在第一代模型中,科研人员通过使用氧化铝孔隙层结合FEC成膜添加剂的复合方法,将沉积锂金属抑制在氧化铝孔隙中的同......阅读全文

宁波材料所在高比能锂金属负极保护方面取得系列进展

  锂金属作为锂二次电池的“圣杯”负极材料,具有3860毫安时/克的高比容量以及最低的氧化还原电位,既可以被应用于锂空气、锂硫等高能量密度体系中,也可以与锂离子正极材料配对实现二次电池能量密度的大幅度提升。然而,受制于锂金属沉积过程中的不规则枝晶生长以及锂金属与电解液的不可逆反应,锂金属负极在循环过

研究揭示高比能锂/钠金属电池正极材料研究新进展

  以金属锂/钠为负极的二次锂/钠金属电池,凭借负极极高的理论比容量和极低的反应电位拥有远超商业化锂离子电池的能量密度与功率密度,在电动汽车和基于绿色电网的大规模储能体系中有着广泛的应用前景。具有远超传统嵌入型正极能量密度的氟化物和硫化物转化反应正极,相比S8和O2分子型正极具有更高的振实密度以及更

我所研制出3D打印高比能锂金属电池

  近日,我所催化基础国家重点实验室二维材料化学与能源应用研究组(508组)吴忠帅研究员、郑双好副研究员团队,设计了三维多孔导电亲锂的Ti3C2Tx MXene骨架用于高容量、无枝晶金属锂负极,匹配三维多孔导电、超高载量磷酸铁锂正极,研制出高能量密度、长寿命锂金属电池。  锂金属电池因金属锂负极具有

科学家在高比能锂/钠金属电池正极材料研究中取得进展

  以金属锂/钠为负极的二次锂/钠金属电池,凭借负极极高的理论比容量和极低的反应电位拥有远超商业化锂离子电池的能量密度与功率密度,在电动汽车和基于绿色电网的大规模储能体系中有着广泛的应用前景。具有远超传统嵌入型正极能量密度的氟化物和硫化物转化反应正极,相比S8和O2分子型正极具有更高的振实密度以及更

化学所等在新型高比能锂-硫电池研究方面取得突破

  在国家自然科学基金委、科技部和中国科学院等支持下,中科院化学所分子纳米结构与纳米技术院重点实验室的研究人员,在解决高比能锂-硫电池中多硫离子的溶出问题,提高锂-硫电池循环寿命方面取得重要突破。研究结果发表在近期J. Am. Chem. Soc.(2012, 134, 18510−

冷冻电镜表征金属锂负极材料,能看到什么?

作为二次电池最理想的负极材料,金属锂早已在锂电池的发展初期得到使用。近几年来,由于具有高能量密度的锂硫和锂氧气电池体系需要金属锂作为负极,金属锂负极材料备受关注。 然而,锂枝晶的生长和较低的库伦效率限制了金属锂作为负极材料的实际应用。目前各研究小组主要专注于以下几个方面来改善金属锂的性能,比如电解液

“房屋架构”复合金属锂负极构筑长循环金属锂电池

  金属锂由于其极高的理论比容量和最负的还原电位而成为下一代高比能量电池的理想负极材料。然而,金属锂负极的实用化道路却十分坎坷。一方面,金属锂面临着其自身特性所带来的内忧:锂离子的沉积与溶出会造成负极体积的巨大变化;更糟糕的是沉积过程锂枝晶的形成可能会刺破隔膜,造成巨大的安全隐患。另一方面,金属锂负

高镁锂比卤水锂分离技术 实现盐湖资源高效绿色利用

  发展锂资源高效绿色分离提取新技术是卤水类型锂资源的重点研究领域。近日,记者从青海省科技厅获悉,来自中国科学院青海盐湖研究所等单位的科研团队围绕锂资源绿色高效高值化利用,针对制约锂资源高质量发展的科学难题、共性关键技术以及制约产业升级的瓶颈问题,经过十几年系统性研究,取得一系列重要理论突破与技术创

高能量密度无负极锂金属电池研究取得进展

原文地址:http://www.cas.cn/syky/202103/t20210324_4782106.shtml   目前,基于锂离子插层化学的传统锂离子电池已无法满足各种新兴领域对锂电池能量密度的需求,因此,以高能量密度著称的锂金属电池引起研究人员的广泛关注。在锂金属电池中,无负极锂金属电池

​金属锂复合负极材料可提升锂电池能量密度

金属锂可直接作为负极材料,但存在安全隐患,长期循环使用时,会出现体积膨胀、锂枝晶生长等问题,体积膨胀会导致电极结构坍塌,锂枝晶生长会刺穿电池隔膜,造成电池短路。在锂电池中,负极起到氧化作用,是电路中电子流出的一极,负极材料是构成负极的材料,其性能直接影响锂电池的能量密度。可用于负极的材料种类较多,大