研究人员把GCMS用于古细菌化石研究
分析测试百科网讯 研究人员相信,他们使用常用于法医学的GC-MS分析方法,发现了新古典分子化石。 根据微生物学家卡尔·沃斯(Carl Woese)设计的系统,地球上有三个生物领域:细菌、古细菌和真核生物。到目前为止,古细菌的分布情况仍然不清楚,特别是对于可追溯到200多万年的地质时期。这是因为除了嗜盐、产甲烷和甲烷营养的古细菌之外,很少发现古细菌的分子化石,而常见的是细菌和真核生物。 分子钟的研究表明古古生大约在38亿年前出现,而来自古代分子化石的更直接的地质学证据的结果显示了2亿年的时间表(除了0.25和27亿年的两个记录之外)。时间表差异的原因可能是由于早期地质期间古细菌的生物量低,或分子化石的不稳定性导致分解。 由(日本)东北大学Ryosuke Saito博士和Kunio Kaiho教授领导的团队从中国南方采集沉积岩样品,并使用气相色谱-质谱(GC-MS)分析其中的有机分子。他们在古代的分子化石中发现了新的化石。......阅读全文
研究人员把GCMS用于古细菌化石研究
分析测试百科网讯 研究人员相信,他们使用常用于法医学的GC-MS分析方法,发现了新古典分子化石。 根据微生物学家卡尔·沃斯(Carl Woese)设计的系统,地球上有三个生物领域:细菌、古细菌和真核生物。到目前为止,古细菌的分布情况仍然不清楚,特别是对于可追溯到200多万年的地质时期。这是因为
古细菌会感染人类
新华社电 日本研究人员日前宣布,他们发现脑脊髓炎患者体内感染了古细菌。这是医学界首次发现古细菌能感染人类。这一发现有望帮助人们弄清原因不明的慢性病和炎症的原因。 在深海的火山口、陆地的热泉以及盐碱湖等生命难以生存的地方,却生活着一群鲜为人知的古怪微生物——古细菌。它们是一种古老的生物,是地球
古细菌的结构特点
古细菌(archaeobacteria)(又可叫做古生菌或者古菌)是一类很特殊的细菌,多生活在极端的生态环境中。具有原核生物的某些特征,如无核膜及内膜系统;也有真核生物的特征,如以甲硫氨酸起始蛋白质的合成、核糖体对氯霉素不敏感、RNA聚合酶和真核细胞的相似、DNA具有内含子并结合组蛋白;此外还具有既
古细菌向达尔文叫板
走极端的小怪物 世界上的生物有千千万万,我们熟悉的那些生物往往都是肉眼所见的动植物,比如一些家畜、农作物、观赏树等。其实我们人类属于体型很大的生物了,所以我们站在自己大动物的角度上观察生物界,难免有失偏颇。 201808231534989602349.jpg 比如,很少有人知道
古细菌的结构和特征
古细菌(archaeobacteria)(又可叫做古生菌、古菌、古 核细胞或原细菌)是一类很特殊的细菌,多生活在极端的生态环境中。具有原核生物的某些特征,如无核膜及内膜系统;也有真核生物的特征,如以甲硫氨酸起始蛋白质的合成、核糖体对氯霉素不敏感、RNA聚合酶和真核细胞的相似、DNA具有内含子并结合组
探秘婆罗洲巨型洞穴网-发现远古细菌
北京时间9月28日消息,据美国国家地理网站报道,30多年前,科学家在马来西亚的婆罗洲沙捞越姆鲁山国家公园地下发现了一个天然洞穴网络。今年5月,一个英国探险小组对沙捞越姆鲁山洞穴系统进行了新的研究和考察,继续绘制这个蜿蜒曲折的地下网络的结构图。根据他们公布的最新照片,这个洞穴系统确
Science:极端环境下嗜热古细菌的奥秘
发表于国际杂志Science上的一篇研究论文中,来自约克大学的研究人员通过研究揭示了嗜热微生物如何将自身DNA从一代传递给下一代,该研究或为进一步理解超级细菌提供一定思路。 硫化叶菌是古细菌王国的一名成员,其个细菌相似是一种单细胞有机体,可以在日本北海道的温泉中分离得到;一些古细菌往往在平凡的
新研究揭秘古细菌能量制造机制,或改写教科书
古细菌是人类20亿年前的“微生物祖先”。发表在新一期《细胞》杂志上的一项研究结果,或改写基础生物学教科书:其解释了这些微小的生命形式如何通过消耗和产生氢来制造能量。正是这种简单而可靠的策略,使它们能在地球上一些最恶劣的环境中茁壮成长数十亿年。 人类近年来才开始考虑使用氢气作为能源,但古细菌这样
新研究揭秘古细菌能量制造机制,或改写教科书
科技日报北京6月16日电 (记者张梦然)古细菌是人类20亿年前的“微生物祖先”。发表在新一期《细胞》杂志上的一项研究结果,或改写基础生物学教科书:其解释了这些微小的生命形式如何通过消耗和产生氢来制造能量。正是这种简单而可靠的策略,使它们能在地球上一些最恶劣的环境中茁壮成长数十亿年。人类近年来才开始考
NAR:古细菌NSun6识别tRNA底物的分子机理
中国科学院生物化学与细胞生物学研究所王恩多研究组的最新发表了题为“Archaeal NSun6 catalyzes m5C72 modification on a wide-range of specific tRNAs”的文章,揭示了PH1991确实是P. horikoshii tRNA:m5
揭秘古老的古细菌如何帮助解释复杂生命的起源
近日,来自日本的科学家们首次捕捉到了一种非常特殊的微生物,其与可能产生地球上所有复杂生命的微生物相似,相关研究成果发表于国际杂志bioRxiv上,研究者表示,如今他们已经能从古细菌单细胞微生物的一个古老谱系中分离并培养出微生物了,这些微生物表面上看起来像细菌,但实则与只从基因组序列中发现的微生物
GCMS数据采集
有机混合物样品用微量注射器由色谱仪进样口注入,经色谱柱分离后进入质谱仪离子原在离子源被电离成离子。离子经质量分析器,检测器之后即成为质谱仪信号并输入计算机。样品由色谱柱不断流入离子源,离子由离子源不断进入分析器并不断得到质谱,只要没定好分析器扫描的质量范围和扫描时间,计算机就可以采集到一个个的质谱。
GCMS数据采集
有机混合物样品用微量注射器由色谱仪进样口注入,经色谱柱分离后进入质谱仪离子原在离子源被电离成离子。离子经质量分析器,检测器之后即成为质谱仪信号并输入计算机。样品由色谱柱不断流入离子源,离子由离子源不断进入分析器并不断得到质谱,只要设定好分析器扫描的质量范围和扫描时间,计算机就可以采集到一个个的质
GCMS数据采集
有机混合物样品用微量注射器由色谱仪进样口注入,经色谱柱分离后进入质谱仪离子原在离子源被电离成离子。离子经质量分析器,检测器之后即成为质谱仪信号并输入计算机。样品由色谱柱不断流入离子源,离子由离子源不断进入分析器并不断得到质谱,只要没定好分析器扫描的质量范围和扫描时间,计算机就可以采集到一个个的质谱。
gcms化学工作站怎么调出gcms图
GC-MS是指气相色谱仪经接口与质谱计结合而构成的气相色谱-质谱法的分析仪器。GC-MS中气相色谱仪相当于质谱仪样品预处理器,而质谱仪则是气相色谱的检测器,通过接口将二者有机地结合。因此,接口是色谱-质谱联用技术的关键装置。
苏州纳米所用仿生学手段揭示古细菌的酸适应机制
古细菌是一类结构简单、不含细胞核和膜包围细胞器的单细胞生物,常常生存于高温、高盐、高压和极端pH值等极端环境中。古细菌对极端环境的适应机制一直是微生物领域的研究热点之一,但由于受到研究手段的限制,嗜酸古细菌对质子的防御、适应机理尚未完全揭示。 中科院苏州纳米技术与纳米仿生研究所
GCMS系统的组成
气质联用仪是分析仪器中较早实现联用技术的仪器。自1957年霍姆斯和莫雷尔首次实现气相色谱和质谱联用以后,这一技术得到长足的发展。在所有联用技术中气质联用,即GC-MS发展最完善,应用最广泛。目前从事有机物分析的实验室几乎都把GC-MS作为主要的定性确认手段之一,在很多情况下又用GC-MS进行定量分析
GCMS得到的信息
总离子色谱图 计算机可以将采集到每个质谱的所有离子相加得到总离子强度,总离子强度随时间变化曲线就是总离子色谱图(图9.21),总离子色谱图的横座标是出峰时间,纵座标是峰高。图中每个峰表示样品的一种组份,由每个峰可以得到相应化合物质谱图;峰面积与该组份含量成正比,可用于定量。由GC-MS得到的总离子色
GCMS系统的组成
气质联用仪是分析仪器中较早实现联用技术的仪器。自1957年霍姆斯和莫雷尔首次实现气相色谱和质谱联用以后,这一技术得到长足的发展。在所有联用技术中气质联用,即GC-MS发展最完善,应用最广泛。目前从事有机物分析的实验室几乎都把GC-MS作为主要的定性确认手段之一,在很多情况下又用GC-MS进行定量分析
GCMS得到的信息
1、总离子色谱图 计算机可以将采集到每个质谱的所有离子相加得到总离子强度,总离子强度随时间变化曲线就是总离子色谱图,总离子色谱图的横座标是出峰时间,纵座标是峰高。图中每个峰表示样品的一种组份,由每个峰可以得到相应化合物质谱图;峰面积与该组份含量成正比,可用于定量。由GC-MS得到的总离子色谱图与一
GCMS得到的信息
计算机可以将采集到每个质谱的所有离子相加得到总离子强度,总离子强度随时间变化曲线就是总离子色谱图(图9.21),总离子色谱图的横座标是出峰时间,纵座标是峰高。图中每个峰表示样品的一种组份,由每个峰可以得到相应化合物质谱图;峰面积与该组份含量成正比,可用于定量。由GC-MS得到的总离子色谱图与一般色谱
GCMS定性分析
目前,色质联用仪数据库中,一般贮存有近30万个化合物标准质谱图。因此,GC-MS最主要的定性方式是库检索。由总离子色谱图可以得到任一组分的质谱图,由质谱图可以利用计算机在数据库中检索。检索结果,可以给出几种最可能的化合物。包括:化合物名称、分子式、分子量、基峰及可靠程度。表4是由计算机给出的某未知物
GCMS的功能应用
质谱成像(imaging mass spectrometry,简称IMS)能够同时获取样品的化学成分信息和样品表面化学成分空间分布信息,并以图像的形式直观地反映被测物的物质与空间分布情况。IMS的应用从半导体表面污染物分析到生物组织上的蛋白分析,以及药物分析、法证鉴定、字画鉴定等。常用的质谱成像技术
科学家揭秘古老的古细菌如何帮助解释复杂生命的起源
近日,来自日本的科学家们首次捕捉到了一种非常特殊的微生物,其与可能产生地球上所有复杂生命的微生物相似,相关研究成果发表于国际杂志bioRxiv上,研究者表示,如今他们已经能从古细菌单细胞微生物的一个古老谱系中分离并培养出微生物了,这些微生物表面上看起来像细菌,但实则与只从基因组序列中发现的微生物
GCMS分析条件的选择
在GC-MS分析中,色谱的分离与质谱数据的采集同时进行,为了使每个组分都得到分离和鉴定,必须设备合适的色谱和质谱分析条件: 色谱条件包括色谱柱类型(填充柱或毛细管柱),固定液种类,汽化温度,载气流量,分流比,温升程序等。设置原则是:一般情况下均使用毛细管柱,极性样品使用极性毛细管柱,非极性样品采用非
GCMS联用仪器的分类
GC-MS仪器的分类有多种方法,按照仪器的机械尺寸,可以初略地分为大型、中型、小型三类气质联用仪;又可以按照仪器的性能,初略地分为高档、中档、低档三类气质联用仪或研究级和常规检测级两类。按照质谱技术,GC-MS通常是指四极杆质谱或磁质谱,GC-ITMS通常是指气相色谱-离子阱质谱,GC-TOFMS是
Basic-Theory-and-Use-of-GCMS(一)
BASIC THEORY AND USE OF GC-MSbyDr. Eugenia SobolevaContent1. Introduction.2. GC-MS systems and components.3. Vacuum system3.1. Rotary pump3.2. Di
Basic-Theory-and-Use-of-GCMS(二)
For ionisation to take place at all, chemical reaction between the sample and the reagent gas must be exothermic. The grater the heat of the reaction,
GCMS分析条件的选择
在GC-MS分析中,色谱的分离与质谱数据的采集同时进行,为了使每个组分都得到分离和鉴定,必须设备合适的色谱和质谱分析条件: 色谱条件包括色谱柱类型(填充柱或毛细管柱),固定液种类,汽化温度,载气流量,分流比,温升程序等。 设置原则是: 一般情况下均使用毛细管柱,极性样品使用极性毛细管柱,非
GCMS联用仪器的分类
GC-MS仪器的分类有多种方法,按照仪器的机械尺寸,可以初略地分为大型、中型、小型三类气质联用仪;又可以按照仪器的性能,初略地分为高档、中档、低档三类气质联用仪或研究级和常规检测级两类。按照质谱技术,GC-MS通常是指四极杆质谱或磁质谱,GC-ITMS通常是指气相色谱-离子阱质谱,GC-TOFMS是