Nature:揭示细菌适应不断变化环境条件的机制
生命的基本前提是活的有机体能够适应不断变化的环境条件。在一项新的研究中,来自德国慕尼黑工业大学和美国加州大学圣地亚哥分校的研究人员确定了细菌用来适应不同环境的调节机制是基于一个全局控制过程的,这个过程能够用一个方程加以描述。相关研究结果发表在2017年11月2日的Nature期刊上,论文标题为“A global resource allocation strategy governs growth transition kinetics of Escherichia coli”。图片来自Schink and Gerland/TUM。 环境条件,比如温度、光线、营养物的可获得性和很多的其他参数,在地球上不断地发生变化。每个有机体,甚至每个细胞都有无数的机制来适应这些变化。 最好研究的例子之一是大肠杆菌(Escherichia coli),即一种也存在于人类肠道中的细菌。营养物质的供应在不同的时间存在着变化。为了生存,这种细......阅读全文
MAC如何影响细菌细胞的免疫调节机制?
细胞溶解: MAC能够插入细菌细胞膜,形成跨膜通道,导致细菌细胞内部的物质大量流失,从而引起细菌死亡。这种细胞溶解作用是免疫系统清除细菌感染的重要手段之一。 抗原呈递: 细菌细胞在被MAC溶解后,其内部的抗原会被释放出来。这些抗原可以被吞噬细胞摄取,并呈递给T细胞,从而激活特异性免疫应答。
J-immunol:细菌调节天然免疫信号新机制
模式识别受体是机体天然存在的能够识别外源微生物特异性抗原物质的受体。一旦被激活,它们将启动天然免疫信号通路引发免疫效应,进而清除入侵的病原体。TLR就是其中的一类主要的免疫识别受体。另一方面,微生物也在不断地进化以逃脱被天然免疫受体识别的几率。例如,李斯特菌能够通过改变其表面肽聚糖的结构逃脱被T
简述糖酵解的调节机制
正常生理条件下,人体内的各种代谢过程受到严格而精细的调节,以保持内环境稳定,适应机体生理活动的需要。这种调节控制主要是通过改变酶的活性来实现的。己糖激酶(葡萄糖激酶)、磷酸果糖激酶-1、丙酮酸激酶是糖酵解的关键酶,它们的活性大小,直接影响着整个代谢途径的速度和方向,其中以磷酸果糖激酶-1最为重要。1
细菌可能也有凋亡机制
细胞的程序性死亡是由基因控制的生物学事件,它在生物发育和维持机体内环境稳定的过程中有重要意义。最常见的程序性死亡是细胞凋亡,凋亡的过程会伴随着一系列细胞形态改变和生化标志。 以往对凋亡的研究都是针对真核细胞的,而本文的研究者发现,在抗生素压力下,大肠杆菌也会显示出凋亡的特殊标记。包括细胞膜内侧的磷
细菌的主要耐药机制
1.产生灭活抗生素的各种酶1.1 β—内酰胺酶(β-lactamase) β—内酰胺类抗生素都共同具有一个核心β—内酰胺环,其基本作用机制是与细菌的青霉素结合蛋白结合,从而抑制细菌细胞壁的合成。产生β—内酰胺酶是细菌对β-内酰胺类抗菌药物产生耐药的主要原因。细菌产生的β-内酰胺酶,可借助其分子中的
热休克蛋白的调节机制介绍
总的来说,HSP的诱导和调节的机制迄今还不清楚,只有一些推测。 应激原诱导HSP生成的速度很快。将果蝇从25℃移至37℃环境,只要20分钟,就可以检出HSP,因而有人推想高温是通过某种已经存在的调节因子作用于基因并从而使转录加强的。实验证明,用热休克细胞的胞浆提取物可以诱导果蝇幼虫唾液腺细胞核
Cell-Metabolism:人类血糖稳态调节机制
根据最近由来自瑞典Karolinska研究所的研究者们做出成果,胰岛负责调控了整个机体的血糖平衡,相关结果发表在最近一期的《Cell Metablism》杂志上。这一结果对于糖尿病的治疗具有重要的意义。 动物体的血糖水平需要受到精细的调控,血糖水平过高或过低都会对身体健康造成严重的威胁,并最终
Nature:揭示基因调节的新型分子机制
Nature:揭示基因调节的新型分子机制 基因编码的信息可以翻译成为蛋白质,这些蛋白质最终会介导机体的生化代谢,其中信使RNA(mRNA)就扮演了重要的角色,而且其也是蛋白质翻译的模板;近日刊登在国际著名杂志Nature上的一篇研究论文中,来自德国亥姆霍兹慕尼黑中心等处的研究人
细菌素的作用机制介绍
由于一种细菌素并不是对每种菌都有抑制作用,在其对特殊菌株的亲和力实验中发现,菌株磷脂组成的pH影响最低抑菌浓度(MIC)。有研究显示,膜通道的形成与细菌膜表面的“耦合分子基团”有关,耦合分子基团使得细菌素与细胞的相互作用更易于进行,从而提高细菌素的抑菌有效性。这一机制已成功地阐述了Nisin和M
细菌鞭毛的运动机制
纤毛和鞭毛由3个主要部分组成:中央轴纤丝、围绕它的质膜和一些细胞质。轴纤丝从纤毛或鞭毛底部的基粒直达顶端,为一束直径约220~240埃的微管,在基粒底部,则集聚成圆锥形束,深入到细胞质中。轴纤丝横切面的微管排列是9+2式,即中心有一对由中央鞘包裹着的微管,外围环绕以两两连接在一起的9组微管二联体。基
细菌鞭毛的运动机制
纤毛和鞭毛由3个主要部分组成:中央轴纤丝、围绕它的质膜和一些细胞质。轴纤丝从纤毛或鞭毛底部的基粒直达顶端,为一束直径约220~240埃的微管,在基粒底部,则集聚成圆锥形束,深入到细胞质中。轴纤丝横切面的微管排列是9+2式,即中心有一对由中央鞘包裹着的微管,外围环绕以两两连接在一起的9组微管二联体。基
简述超级细菌的耐药机制
1.细菌产生灭活酶或钝化酶,破坏抗生素的结构,使其失去活性。 2.改变抗生素作用的靶位蛋白结构和数量,使细菌对抗生素不再敏感。 3.细菌细胞膜渗透性改变,使抗生素不能进入菌体内部。 4.细菌主动药物外排泵作用,将抗生素排出菌体。 5.细菌生物被膜的形成,降低抗生素作用。
Science:调节大脑可塑性的分子机制
近日,来自伦敦大学国王学院的科学家们通过研究发现了一种新型分子开关,其可以帮助控制应对神经网络活性改变的神经元的特性,该项研究刊登于国际杂志Science上,相关研究表明大脑中的“硬件”是可协调的,而且对于理解基本的神经科学原理提供了一定帮助,也为后期开发治疗神经性障碍比如癫痫症的新型疗法提供了
关于重塑因子调节基因表达机制的假设
机制1:1 个转录因子独立地与核小体DNA 结合(DNA 可以是核小体或核小体之间的),然后,这个转录因子再结合1 个重塑因子,导致附近核小体结构发生稳定性的变化,又导致其他转录因子的结合,这是一个级联反应的过程——重建;机制2: 由重塑因子首先独立地与核小体结合,不改变其结构,但使其松动并发生滑动
渗透调节的非Na+方式和机制
破囊壶菌是低等的真菌,生长在大量的Na+环境中。Na+参与细胞渗透调节和细胞代谢。渗透调节通过从环境中吸收无机离子,或者改变细胞质中可溶性物质的浓度来完成。通过质膜的渗透调节在转运过程中非常重要。但是在海洋原生生物中如何通过质膜进行渗透调节还不清楚。澳大利亚的科学家Shabala等人用非损伤微测技术
研究揭示斑马鱼肠脑调节关键机制
原文地址:http://news.sciencenet.cn/htmlnews/2024/2/517493.shtm
植物生长调节剂的作用机制
植物激素是指植物体内天然存在的对植物生长、发育有显著作用的微量有机物质,也被称为植物天然激素或植物内源激素。它的存在可影响和有效调控植物的生长和发育,包括从细胞生长、分裂,到生根、发芽、开花、结实、成熟和脱落等一系列植物生命全过程。
关于酸碱平衡紊乱的机体调节机制介绍
1、血液缓冲系统:HCO3-/H2CO3是最重要的缓冲系统,缓冲能力最强(含量最多;开放性缓冲系统)。两者的比值决定着pH值。正常为20/1,此时pO值为7.4。其次红细胞内的Hb-/HHb,还有HPO42-/H2PO4-、Pr-/HPr。 2、肺呼吸:通过中枢或者外周两方面进行。中枢:PaC
研究揭示ATM激酶别构调节的分子机制
研究论文阐明了基因组稳定性调控核心激酶-ATM (ataxia-telangiectasia mutated)别构调节的分子机制。 基因组稳定性维持是一切生命活动的基础,然而,多种外源和内源因素产生的广泛DNA损伤和复制压力,构成了基因组不稳定的主要来源。ATM和 ATR (ataxia te
肌动蛋白(Actin)动力学调节机制
细胞骨架的定义分为狭义和广义两种,前者是微丝,微管和中间纤维的总称,它们存在于细胞质内,又被称为“胞质骨架”。后者还包括细胞外基质(extracellular matrix)、核骨架(nucleoskeleton)和核纤层(nuclear lamina)。细胞骨架是细胞内运动,细胞器固定,细胞外型维
Nature-Neuroscience:人体生物钟新调节机制
一个国际科学家团队发现了,什么可以作为我们机体内部生物钟的分子重置按钮。他们的这个发现,揭示了一个潜在的治疗一系列疾病的靶点,例如,常常与时差,倒班和夜间光照有关的疾病,如从睡眠紊乱到行为,认知和代谢失常,还有神经精神疾病,如抑郁症和自闭症。 由蒙特利尔McGill 和Concordia 大学
抗病毒免疫反应调节机制的发现
抗病毒免疫 一种抗病毒免疫反应调节新机制,由第二军医大学免疫学研究所、医学免疫学国家重点实验室曹雪涛院士和安华章副教授等组成的课题组所揭示。这一新的科学发现,为人类有效调控抗病毒免疫反应增添了新思路,同时有可能提出抗病毒免疫治疗的新靶点。2007年1月05日,国际免疫学领域权威学术期刊《免疫》
研究发现ATM激酶别构调节的分子机制
万事万物都处于运动当中,细胞中的基因组也不例外,基因组可能发生突变,可能发生序列重复,种种的变故导致基因组重排和不稳定。一旦,这些细微的变化蓄积的多了,或是在某些关键的部分发生决定性的变化可能导致机体机能发生变化,导致疾病甚至癌症的发生。基因组稳定性维持是一切生命活动的基础,然而,多种外源和内源
PNAS:发现细菌致病新机制
引发慢性感染的细菌能破坏免疫应答,在宿主体内生存并繁殖,长期潜伏并可能引发致命的并发症,但人们对其中的致病机制还知之甚少。Bartonella细菌能在哺乳动物(包括人类在内)体内引发慢性感染,病菌主要通过跳蚤和虱子等节肢动物传染,也能通过组织伤口传染(如猫的抓伤)。 引人注目的是,这种细菌
解锁超级细菌耐药的传播机制
细菌耐药性主要是由于耐药基因的广泛传播引起的,而多重耐药质粒融合传播,更使耐药基因的传播如鱼得水。 “多重耐药质粒可以携带多个耐药基因,通过接合转移在不同细菌之间传播,从而造成耐药基因的传播。进一步解析耐药基因及其传播机制的关键是要获得完整的质粒图谱。”扬州大学教授李瑞超与香港城市大学合作,
“隐身斗篷”:超级细菌逃逸机制揭示
据英国《自然》杂志近日发表的一项医学研究成果,一个国际研究小组最新发现,一种蛋白质能够成为超级细菌的“隐身斗篷”,帮助耐甲氧西林金黄色葡萄球菌躲避人体免疫系统的识别和攻击。该发现为未来治疗细菌感染提供了新靶点。 超级细菌被认为是全球医疗健康领域最具挑战性的目标之一,几乎让人类陷入了无药可用的窘
新研究揭示细菌自我保护机制
近日,来自英国伯明翰大学的一个研究团队对某些类型的细菌用于保护自己免受攻击的机制有了新的发现。 已知革兰氏阴性菌可以引起肺炎、霍乱、伤寒和大肠杆菌感染等疾病,以及许多医院获得性肺炎感染。这些病毒对抗生素的抗药性越来越强,部分原因是由于它们的构建方式。 革兰氏阴性细菌被双膜包围,形成了高效的保
口腔细菌促肠癌的机制分析
为了保持口腔清洁,预防牙周炎,你每天都会刷牙。可是,你知道么,其实,在保持牙齿健康的同时,你无形中可能也在降低自己发生结直肠癌的几率? 口腔作为消化道的最上游,是人体与外界相通的最前线。有将近700种微生物定植于口腔,构成了继肠道菌群后的人体第二大菌群。而每天都有不少来自口腔的细菌,随着吞咽顺
细菌耐药性的病理机制
1、产生灭活酶:细菌产生灭活的抗菌药物酶使抗菌药物失活是耐药性产生的最重要机制之一,使抗菌药物作用于细菌之前即被酶破坏而失去抗菌作用。这些灭活酶可由质粒和染色体基因表达。β-内酰胺酶:由染色体或质粒介导。对β-内酰胺类抗生素耐药,使β-内酰胺环裂解而使该抗生素丧失抗菌作用。β-内酰胺酶的类型随着
中科院研究揭示炎症条件下调节T细胞的负调节机制
近日,国际学术期刊《生物化学杂志》在线发表了中科院上海巴斯德研究所李斌课题组的一项研究成果,研究人员在题为《炎症条件下PIM1激酶通过特异性促进转录因子FOXP3 Serine 422位点的磷酸化负向调控其转录调节活性》的研究论文,揭示了炎症条件下调节性T细胞(Treg)功能稳定性负调