科学家称“多信使天文学”时代将至

中子星撞击会释放出多种形式的信号,现在天文学家已经可以探测到这些信号。图片来源:Robin Dienel 2017年8月17日的一个早上,随着天空中划过一道闪光,天文学的新时代来临了。这个被费米伽马射线太空望远镜捕捉到的伽马射线爆来自宇宙中某处两个中子星的合并。但伽马射线并非此次合并形成的唯一信号。在费米望远镜捕捉到这一信号的几秒内,合并形成的时空涟漪也在两个设施——位于美国的引力波干涉天文台(LIGO)和位于意大利的处女座天文台(Virgo)之间产生了回荡。 这些涟漪即为引力波,检测到它们更类似于“听见”而非“看见”。根据引力波抵达的时间和强度,天文学家推测它们来自于距离地球1.3亿光年的一个星系。此后,全世界数千名科学家围绕整个电磁光谱——从伽马射线到可见光对此次合并作了协调性研究。 观察表明,此次合并产生了比铁更重的大量元素,证明了中子星撞击是宇宙中金和其他稀有金属的最初来源。随着探测以及研究更多的类似合并,这样......阅读全文

科学家称“多信使天文学”时代将至

  中子星撞击会释放出多种形式的信号,现在天文学家已经可以探测到这些信号。图片来源:Robin Dienel  2017年8月17日的一个早上,随着天空中划过一道闪光,天文学的新时代来临了。这个被费米伽马射线太空望远镜捕捉到的伽马射线爆来自宇宙中某处两个中子星的合并。但伽马射线并非此次合并形成的唯一

前信使RNA

中文名称前信使RNA英文名称pre-messenger RNA;pre-mRNA;precursor mRNA定  义未经剪接加工的基因转录产物。即初级转录物。应用学科细胞生物学(一级学科),细胞遗传(二级学科)

信使RNA的构成

  大肠杆菌的全酶有5个亚基(α2ββ’ωσ),含2个锌。β催化形成磷酸二酯键,β’结合模板,σ亚基称为起始因子,可使RNA聚合酶稳定地结合到启动子上。ββ’ωσ称为核心酶。σ亚基在不同菌种间变动较大,而核心酶比较恒定。酶与不同启动子的结合能力不同,不同启动因子可识别不同的启动子。σ70识别启动子共

什么是信使RNA?

信使RNA,中文译名“信使核糖核酸”,是由DNA的一条链作为模板转录而来的、携带遗传信息能指导蛋白质合成的一类单链核糖核酸。

信使RNP的概念

mRNA分子的合成始于转录,并最终以降解结束。在被翻译之前,真核mRNA分子通常需要大量加工和转运,而原核mRNA分子则不需要。真核mRNA分子和它周围的蛋白质一起被称为信使RNP。

信使RNA的应用

2020年12月,美国食品和药物管理局(FDA)授权一款运用mRNA(信使核糖核酸)技术研制的新冠疫苗的紧急使用许可。2022年2月,南非一公司3日对当地媒体表示,该公司利用已公开的新冠疫苗核酸序列,开发出非洲大陆首款mRNA(信使核糖核酸)新冠疫苗,计划今年底前开展临床试验。 南非当地时间2022

信使RNA的降解

同一细胞内的不同mRNA具有不同的寿命(稳定性)。在细菌细胞中,单个mRNA可以存活数秒至超过一小时,但平均寿命为1至3分钟,因此,细菌mRNA的稳定性远低于真核mRNA。哺乳动物细胞mRNA的寿命从几分钟到几天不等。mRNA的稳定性越高,从该mRNA产生的蛋白质越多。 mRNA的有限寿命使细胞能够

信使RNA的功能特点

信使RNA(mRNA)最早发现于1960年,在蛋白质合成过程中负责传递遗传信息、直接指导蛋白质合成,具有以下特点。 1.含量低,占细胞总RNA的1%~5%。 2.种类多,可达105种。不同基因表达不同的mRNA。3.寿命短,不同mRNA指导合成不同的蛋白质,完成使命后即被降解。细菌mRNA的平均半衰

信使RNA的功能特点

信使RNA(mRNA)最早发现于1960年,在蛋白质合成过程中负责传递遗传信息、直接指导蛋白质合成,具有以下特点。 1.含量低,占细胞总RNA的1%~5%。 2.种类多,可达105种。不同基因表达不同的mRNA。3.寿命短,不同mRNA指导合成不同的蛋白质,完成使命后即被降解。细菌mRNA的平均半衰

信使RNA的功能特点

信使RNA(mRNA)最早发现于1960年,在蛋白质合成过程中负责传递遗传信息、直接指导蛋白质合成,具有以下特点。 1.含量低,占细胞总RNA的1%~5%。2.种类多,可达105种。不同基因表达不同的mRNA。 3.寿命短,不同mRNA指导合成不同的蛋白质,完成使命后即被降解。细菌mRNA的平均半衰

双信使系统的概念

磷脂酰肌醇信号通路,在磷脂酰肌醇信号通路中胞外信号分子与细胞表面G蛋白耦联型受体结合,激活质膜上的磷脂酶C(PLC-β),产生1,4,5-三磷酸肌醇(IP3)和二酰基甘油(DG)两个第二信使,胞外信号转换为胞内信号,这一信号系统又称为“双信使系统”。

细胞化学基础信使RNA

信使RNA(mRNA)最早发现于1960年,在蛋白质合成过程中负责传递遗传信息、直接指导蛋白质合成,具有以下特点。 1.含量低,占细胞总RNA的1%~5%。 2.种类多,可达105种。不同基因表达不同的mRNA。 3.寿命短,不同mRNA指导合成不同的蛋白质,完成使命后即被降解。细菌mRNA的平均半

信使RNA的分类介绍

  1.噬菌体的RNA聚合酶结构简单,是单链蛋白,功能也简单。  2.细菌则具有复杂的多亚基结构(450Kd),可识别并转录超过1000个转录单位。  3.真核生物的酶有多种,根据a-鹅膏蕈碱(环状8肽,阻断RNA延伸)的抑制作用可分为三类:聚合酶A对它不敏感,分布于核仁,转录核糖体RNA;聚合酶B

信使RNA转录的调控

  一、遗传信息的表达有时序调控和适应调控,转录水平的调控是关键环节,因为这是表达的第一步。转录调控主要发生在起始和终止阶段。  二、操纵子是细菌基因表达和调控的单位,有正调节和负调节因子。阻遏蛋白的作用属于负调控。环腺苷酸通过其受体蛋白(CRP)促进转录,可促进许多诱导酶的合成。操纵子可构成综合性

第一信使和第二信使的作用差异

能将细胞表面受体接受的细胞外信号转换为细胞内信号的物质称为第二信使,而将细胞外的信号称为第一信使(first messenger)。第二信使为第一信使作用于靶细胞后在胞浆内产生的信息分子,第二信使将获得的信息增强,分化,整合并传递给效应器才能发挥特定的生理功能或药理效应。

关于信使RNA的基本介绍

  信使RNA是由DNA的一条链作为模板转录而来的、携带遗传信息的能指导蛋白质合成的一类单链核糖核酸。  以细胞中基因为模板,依据碱基互补配对原则转录生成mRNA后,mRNA就含有与DNA分子中某些功能片段相对应的碱基序列,作为蛋白质生物合成的直接模板。mRNA虽然只占细胞总RNA的2%~5%,但种

细胞化学词汇转移信使RNA

中文名称:转移-信使RNA英文名称:ransfer-messenger RNA;tmRNA定  义:一类兼有接受(携带)氨基酸和编码氨基酸的双功能RNA分子。其主要功能是在特定情况下可提前终止蛋白质的生物合成,以免产生不良产物。应用学科:生物化学与分子生物学(一级学科),核酸与基因(二级学科)

信使RNA的基本内容

  信使RNA是由DNA的一条链作为模板转录而来的、携带遗传信息的能指导蛋白质合成的一类单链核糖核酸。  以细胞中基因为模板,依据碱基互补配对原则转录生成mRNA后,mRNA就含有与DNA分子中某些功能片段相对应的碱基序列,作为蛋白质生物合成的直接模板。mRNA虽然只占细胞总RNA的2%~5%,但种

信使RNA的结构功能特点

信使RNA(mRNA)最早发现于1960年,在蛋白质合成过程中负责传递遗传信息、直接指导蛋白质合成,具有以下特点。1.含量低,占细胞总RNA的1%~5%。 2.种类多,可达105种。不同基因表达不同的mRNA。 3.寿命短,不同mRNA指导合成不同的蛋白质,完成使命后即被降解。细菌mRNA的平均半衰

细胞化学词汇转移信使RNA

中文名称:信使RNA外文名称:Messenger RNA 定       义:信使RNA,中文译名“信使核糖核酸”,是由DNA的一条链作为模板转录而来的、携带遗传信息能指导蛋白质合成的一类单链核糖核酸。以细胞中基因为模板,依据碱基互补配对原则转录生成mRNA后,mRNA就含有与DNA分子中某些功能片

信使号证实水星真有水

 信使号证实水星上存在冰。 (图片提供:Nancy Chabot/JHU-APL)     尽管暴露在太阳炙热的光芒下,作为太阳系最内侧的行星,微小的水星却很可能是大量冰原的家。  20年前,来自地球的雷达观测显示,在水星极地附近存在一些高反射的小型区域,这意味着冰的存在。  如今,

信使RNA的基本信息

信使RNA,中文译名“信使核糖核酸”,是由DNA的一条链作为模板转录而来的、携带遗传信息能指导蛋白质合成的一类单链核糖核酸。以细胞中基因为模板,依据碱基互补配对原则转录生成mRNA后,mRNA就含有与DNA分子中某些功能片段相对应的碱基序列,作为蛋白质生物合成的直接模板。mRNA虽然只占细胞总RNA

“信使”细胞能够促进骨骼愈合

  骨骼如何愈合,它们怎么能愈合得更好?根据最近发表在eLife杂志上的USC干细胞研究,这些问题的答案可能在于新发现的“信使”细胞群。  相应的作者,干细胞生物学副教授Francesca Mariani说:“美国有近50万患者每年骨修复失败,刺激这些'信使'和其他关键细胞类型可以加

信使RNA的合成和加工

mRNA分子的合成始于转录,并最终以降解结束。在被翻译之前,真核mRNA分子通常需要大量加工和转运,而原核mRNA分子则不需要。真核mRNA分子和它周围的蛋白质一起被称为信使RNP。 转录转录是指由DNA合成RNA的过程。在转录期间,RNA聚合酶根据需要将一个基因的DNA拷贝成mRNA,这个过程在真

转移信使RNA的结构特点

中文名称转移-信使RNA英文名称transfer-messenger RNA;tmRNA定  义一类兼有接受(携带)氨基酸和编码氨基酸的双功能RNA分子。其主要功能是在特定情况下可提前终止蛋白质的生物合成,以免产生不良产物。应用学科生物化学与分子生物学(一级学科),核酸与基因(二级学科)

信使RNA的合成和加工

mRNA分子的合成始于转录,并最终以降解结束。在被翻译之前,真核mRNA分子通常需要大量加工和转运,而原核mRNA分子则不需要。真核mRNA分子和它周围的蛋白质一起被称为信使RNP。转录转录是指由DNA合成RNA的过程。在转录期间,RNA聚合酶根据需要将一个基因的DNA拷贝成mRNA,这个过程在真核

信使核糖核酸的简介

  信使RNA是指导蛋白质生物合成的直接模板。mRNA 占细胞内RNA总量的2%~ 5%,种类繁多,其分子大小差别非常大。  信使RNA(mRNA)是一大类RNA分子,它将遗传信息从DNA传递到核糖体,在那里作为蛋白质合成模板并决定基因表达蛋白产物肽链的氨基酸序列。 RNA聚合酶将初级转录物mRNA

双信使系统的反应过程

Ca2+活化各种Ca2+结合蛋白引起细胞反应,钙调素(calmodulin,CaM)由单一肽链构成,具有四个钙离子结合部位。结合钙离子发生构象改变,可激活钙调素依赖性激酶(CaM-Kinase)。细胞对Ca2+的反应取决于细胞内钙结合蛋白和钙调素依赖性激酶的种类。如:在哺乳类脑神经元突触处钙调素依赖

信使RNA的基本信息介绍

  信使RNA(mRNA)最早发现于1960年,在蛋白质合成过程中负责传递遗传信息、直接指导蛋白质合成,具有以下特点。  1.含量低,占细胞总RNA的1%~5%。  2.种类多,可达105种。不同基因表达不同的mRNA。  3.寿命短,不同mRNA指导合成不同的蛋白质,完成使命后即被降解。细菌mRN

简述信使RNA的转录过程

  分为起始、延长和终止三个阶段。起始包括对双链DNA特定部位的识别、局部(17bp)解链以及在最初两个核苷酸间形成磷酸二酯键。第一个核苷酸掺入的位置称为转录起点。  起始后起始因子离开,核心酶构象改变,沿模板移动,转录生成杂交双链(12bp)。随后DNA互补链取代RNA链,恢复DNA双螺旋结构。延