国家863计划主题项目“先进燃料电池发电技术”通过验收

近期,科技部高新司在长春组织召开了“十二五”国家863计划主题项目“先进燃料电池发电技术”验收会。该项目共设2个课题,由中国科学院长春应用化学研究所、武汉银泰科技有限公司、中国科学院大连化学物理研究所、清华大学、东方电气集团等多家单位共同完成。图片来源于网络 项目经过多年攻关,针对现有直接甲醇燃料电池长时发电系统和千瓦级燃料电池与太阳能电池互补的供能系统这两种燃料电池发电技术在成本、效率和寿命方面的应用瓶颈,研制了质子交换膜、纳米电催化剂等关键材料及核心部件膜电极,膜电极在80℃时峰值功率密度达到262兆瓦/平方厘米;开展了直接甲醇燃料电池电堆及系统集成技术研究,组装了额定输出功率为5瓦、10瓦、20瓦、100瓦、150瓦及500瓦等系列样机,能量转化效率达到26.3%,累计运行2600小时,衰减率8.9%;研制了2套3千瓦高压氢源-燃料电池一体化智能电源系统样机、1套3千瓦低成本燃料电池备用应急电源系统以及1套5kW级......阅读全文

blot-转膜是应该加甲醇还是不该加

westernblot中封闭主要是起去除非特异性吸附的作用在westernblot转膜时,PVDF膜在甲醇活化后是带电的,因而在转膜时会将蛋白吸附。封闭的目的就是要将PVDF膜上无蛋白的部分空隙用奶粉填满,以免孵抗体的时候一抗二抗与之结合,产生非特异条带或者是背景杂乱。所以westernblot中封

10分钟读懂转膜甲醇的作用

  VDF膜一定要在纯甲醇里浸润的!不然蛋白结合不上去。  在100%甲醇里短暂浸润,其目的是为了活化PVDF膜上面的正电基团,使它更容易跟带负电的蛋白质结合。小分子及大分子量的蛋白转移时,多加或不加甲醇也是这个目的。因为小分子不容易和膜结合而大分子更容易。  转膜的过程,是一个恒定电场下,电荷转移

膜电极法测定溶解氧

一、膜电极法1.方法原理本方法所采用的电极由一小室构成,室内有两个金属电极并充有电解质,用选择性薄膜将小室封闭住。实际上水和可溶解物质离子不能透过这层膜,但氧和一定数量的其他气体及亲水性物质可透过这层薄膜。将这种电极浸入水中进行溶解氧测定。 因原电池作用或外加电压使电极间产生电位差。这种电位差,使金

中国(南京)国际氢能及燃料电池产业大会

以“氢”相会,零碳未来4月21-23日 南京国际展览中心为贯彻落实《氢能产业发展中长期规划(2021-2035 年)》要求,加快推进我国氢能源及燃料电池产业链上下游合作、成果转化和商业应用,促进氢能产业健康有序发展,我国燃料电池汽车产业进入提速关键期,“氢能高速”号角正式吹响,中国南京氢能展将汇聚行

ph电极怎么存储和电极玻璃膜干涸应该怎么处理

1 PH电极怎么存储  电极存储液与填充液保持一致,例如一致填充液为3mol/L KCL溶液中;若填充液为3mol/L的KCL饱和AgCL溶液中。电极不可长时间干放或浸泡在蒸馏水中,否则会缩短电极寿命。2 电极玻璃膜干涸应该怎么处理?  短时间干涸的玻璃膜可以通过浸泡在0.1mol/L的稀盐酸中数小

纸电极让微生物燃料电池更廉价高效

  美国研究人员近日在《美国化学学会·能源通讯》杂志上报告说,他们开发出一种新技术,可用纸制造微生物燃料电池的电极,与过去的方法相比这能让微生物燃料电池更为廉价和高效。  微生物燃料电池是一种利用微生物来产生电能的装置,一个重要应用场景是废水处理,微生物在去除水中污染物的同时,还能产生电能。但目前所

覆膜法溶氧电极功能介绍

恒电位三极式测试原理与普通的二极测试电极不同,TriOxmatic™系列溶氧电极采用恒电位三极式测试原理,整个电化学测试系统包括一个金阴极(工作电极A)和两个银电极,其中一个银电极为计数阳极G,另一个为参考电极R,参考电极没有电流流过,这样参考电极上的电位非常稳定,增强了电极感测结果的稳定性,提高了

湿膜加湿器与电极加湿器的区别

1、电极加湿器是洁净等温加湿,加湿效率高,而且是洁净加湿器,无污染,蒸汽效果好。2、湿膜加湿器加湿速度慢,饱和效率没有电极加湿器的高,体积大。

清华大学:多片膜电极一致性检测技术

根据清华大学消息,燃料电池堆性能和寿命取决于膜电极,单节燃料电池失效意味着燃料电池堆整体失效。筛选高一致性膜电极,使膜电极各理化参数尽量一致,是组装高性能长寿命电堆的关键。但是以往检测膜电极催化剂活性面积、氢渗透电流、双电层电容等参数的方法于单体燃料电池,不能用于由多片膜电极组成的燃料电池堆,而且多

质子交换膜燃料电池阴极催化剂研制获进展

  近日,中国科学技术大学合肥微尺度物质科学国家实验室和化学与材料科学学院教授曾杰课题组与美国Akron大学教授彭振猛、中国科学院上海应用物理研究所教授司锐合作,在质子交换膜燃料电池阴极催化剂研制方面取得新进展。研究人员基于集团效应(ensemble effect)设计出一种铑原子掺杂的铂超细纳米线

质子交换膜燃料电池阴极催化剂研究取得进展

  近日,中国科学技术大学合肥微尺度物质科学国家研究中心和化学与材料科学学院教授曾杰课题组与湖南大学教授黄宏文合作,研制了一种兼具优异的催化活性及稳定性的质子交换膜燃料电池阴极催化剂。该成果以One-Nanometer-Thick PtNiRh Trimetallic Nanowires with

过程工程所开发出直接甲醇燃料电池选择性电催化剂

  直接甲醇燃料电池(DMFC)是将甲醇氧化反应的化学能直接转化为电能的一种发电装置,其工作原理非常简单,主要由阴极、阳极、质子交换膜及双极板等组成。工作时,甲醇在阳极上被催化氧化为CO2和H2O,同时产生6个电子和6个质子,其中质子经质子交换膜由阳极到达阴极,在催化剂作用下使阴极室的氧还原,生成H

合肥研究院在甲醇燃料电池催化剂材料研究中取得进展

  近期,中国科学院合肥物质科学研究院固体物理研究所微纳技术与器件研究室研究员李越课题组在可控制备多孔金-银-铂(AuAgPt)合金纳米材料及其甲醇催化研究方面取得新进展,相关研究结果发表在Journal of Materials Chemistry A ( J. Mater. Chem. A, D

兰州化物所制出新型石墨烯基直接甲醇燃料电池阳极催化剂

  在中科院“百人计划”和国家自然科学基金项目支持下,中科院兰州化学物理研究所清洁能源化学与材料实验室低维材料与化学储能课题组在直接甲醇燃料电池阳极催化剂的合成与性能研究领域取得新进展。   直接甲醇燃料电池具有低温快速启动、结构简单、燃料易储存、环境污染小等优点,可用于不间断通讯设备和便携式电子

2024武汉国际氢能源及燃料电池产业博览会

                                            2024武汉国际氢能源及燃料电池产业博览会2024 Wuhan International Hydrogen Energy and Fuel Cell Industry Expo时间:2024.8.14-16  

我国CCM型膜电极研究取得重大进展

  膜电极是质子交换膜燃料电池(PEMFC)的核心部件,直接影响电池输出性能和反应效率,开发低铂(Pt)担量、高反应效率的CCM(催化剂制备到膜上)型薄催化层膜电极是目前质子交换膜燃料电池开发的一个重要技术方向。在863计划电动汽车重大项目支持下,大连化物所承担的“下一代燃料电池系统研究与开发”课题

我国CCM型膜电极研究取得重大进展

  膜电极是质子交换膜燃料电池(PEMFC)的核心部件,直接影响电池输出性能和反应效率,开发低铂(Pt)担量、高反应效率的CCM(催化剂制备到膜上)型薄催化层膜电极是目前质子交换膜燃料电池开发的一个重要技术方向。在863计划电动汽车重大项目支持下,大连化物所承担的“下一代燃料电池系统研究与开发”课题

两信号暗示燃料电池热来临-国内研究亟须跟进

  3月初,在日本东京举办的第九届国际氢燃料电池展上,丰田FCHV-adv、日产X-TRAIL FCV、本田FCX Clarity等全面展示了日系FCV(燃料电池汽车)的研发成果。FCV取代EV(电动车)成为本届新能源汽车展的新亮点,这或表明接下来燃料电池技术将成为新能源汽车的又一发展方向

在线质谱仪在质子交换膜氢燃料电池阳极尾气分析检...

在线质谱仪在质子交换膜-氢燃料电池阳极尾气分析检测中的应用随着燃料电池行业广阔的市场前景,舜宇恒平仪器研发了一种质子交换膜( PEMFC ) -氢燃料电池阳极尾气质谱检测系统,该系统主要包括气体前处理装置及在线质谱仪两部分组成。气体前处理装置主要包括取样点、抽气泵、冷阱及稳压装置(见图 1 ),所述

我所燃料电池与超级电容器复合电源研究方面取得新进展

  近日,我所醇类燃料电池及复合电能源研究中心孙公权研究员与王素力研究员带领的团队在燃料电池与超级电容器复合电源研究方面取得新进展,相关研究结果发表在ACS Energy Letters上。图片来源于网络  目前,大多数化学电源难以同时兼具高功率密度与高能量密度:燃料电池能量密度高,但由于液体燃料电

关于2024重庆氢能与燃料电池技术及产品展新通知!

2024重庆国际氢能与燃料电池技术及产品展览会时间:2024年4月10-12日         地址:重庆国际博览中心(悦来)绿色丨科技丨共享丨融合2024展会概况当前,中国已经是世界能源最大的生产国和消费国,同时也是世界上最大的碳排放国。氢气产自于水,通过和氧气反应生成水释放化学能,而且使用后的产

2024重庆氢能与燃料电池技术及产品展将于4月10日开幕!

2024重庆国际氢能与燃料电池技术及产品展览会时间:2024年4月10-12日         地址:重庆国际博览中心(悦来)绿色丨科技丨共享丨融合2024展会概况当前,中国已经是世界能源最大的生产国和消费国,同时也是世界上最大的碳排放国。氢气产自于水,通过和氧气反应生成水释放化学能,而且使用后的产

武汉氢能源展|2024武汉燃料电池产业展

2024武汉国际氢能源及燃料电池产业博览会时间:2024.8.14-16   地点:武汉国际博览中心展会规模:20,000+ ㎡      300+          15000人次         15+场展区面积       预邀展商         专业观众          行业论坛主办单位

乙醇氧气燃料电池电极方程式,在酸,碱条件下

乙醇燃料电池,KOH作电解质总反应:C₂H₅OH+3O₂+4KOH=2K₂CO₃+5H₂O负极:C₂H₅OH+16OH⁻-12e⁻=2CO₃²⁻+11H₂O正极:O₂+4e⁻+2H₂O=4OH⁻乙醇燃料电池,酸作电解质总反应: C₂H₅OH+3O₂=2CO₂+3H₂O正:O₂ + 4H⁺+ 4e⁻

突破续航瓶颈-燃料电池望推动新能源汽车升级

   伴随着燃料电池技术的突破,续航短、补给难等新能源汽车发展的瓶颈有望得到突破,燃料电池车也有望成为整个行业新的增长极。  燃料电池,通俗理解就是将燃料的化学能转化为电能的装置,其燃料分为氢气、甲醇、乙醇、甲烷等。目前国际国内相对主流的是氢燃料电池,就是用氢气作为燃料,既代替石油,也代替现在的锂电

物理所等在直接甲醇燃料电池催化剂研究中取得新进展

  目前和今后很长时期内,我国能源结构仍将是以煤炭为主,但是煤炭的开发和加工利用已经成为环境污染物排放的主要来源,近年来全国各地出现的雾霾天气更是引起人们的高度关注。因此,发展洁净煤技术是我国能源发展的必然选择。  燃料电池是一种直接将燃料的化学能转化为电能的清洁高效的发电器件,是解决目前化石类燃料

XRF用于氢燃料电池的质量控制

  XRF用于氢燃料电池的质量控制  在减少碳排放的竞赛中,燃料电池技术发展迅速。锂离子电池技术和氢燃料电池系统都能助力有关减少世界二氧化碳排放的解决方案。  所有类型的燃料电池均包括三个基本组成部分:两个电极(负极和正极)以及夹在两个电极之间的电解质。为电动车提供动力的氢燃料电池由于使用质子导电聚

膜电极法测定溶解氧的方法原理

本方法所采用的电极由一小室构成,室内有两个金属电极并充有电解质,用选择性薄膜将小室封闭住。实际上水和可溶解物质离子不能透过这层膜,但氧和一定数量的其他气体及亲水性物质可透过这层薄膜。将这种电极浸入水中进行溶解氧测定。 因原电池作用或外加电压使电极间产生电位差。这种电位差,使金属离子在阳极进入溶液,而

溶解氧的测定方法(一)膜电极法

一、方法原理  本方法所采用的电极由一小室构成,室内有两个金属电极并充有电解质,用选择性薄膜将小室封闭住。实际上水和可溶解物质离子不能透过这层膜,但氧和一定数量的其他气体及亲水性物质可透过这层薄膜。将这种电极浸入水中进行溶解氧测定。  因原电池作用或外加电压使电极间产生电位差。这种电位差,使金属离子

pem的工作原理

庄没有纳入电网覆盖范围。不仅如此,通往城乡的电力供应仍旧不稳定。因此,柴油发电机被大范围地应用于分散式供电。柴油发电机(图 1 左)虽然价格低廉,但普遍效率低下,同时会对周边环境和居民的健康带来潜在危害。图 1. 左图:为印度的电信塔供电的柴油发电机。右图:PEM 燃料电池。为解决这一难题,印度国家