人工合成流体包裹体的拉曼光谱分析

拉曼光谱分析毛细管样品具有简单、直接、快速、精准等优势,拉曼光谱仪检测毛细管样品不会干扰到样品内流体的信号,同时,由于毛细管具有宏观尺寸,因此,拉曼光谱仪激光束不仅能精确地聚焦到每个相态,而且能够采集到很好的拉曼信号。人工合成的包裹体能够清晰完善的演绎相变过程及特点,为鉴定天然包裹体的准确观测奠定了基础,二氧化碳人工合成包裹体可以作为标样,作为校验应用与自然界包裹体分析研究的各种仪器和测试方法的标准,并为天然流体包裹体的拉曼光谱检测提供技术上的可行性和实用性。引言流体包裹体是封存在矿物晶格缺陷及穴窝中的原始地质流体,常用于揭示不同时期成岩成矿物化条件、流体成分和物质来源。人工包裹体作为天然包裹体的类比物,是解决与流体包裹体有关的许多问题有效途径,作为校验应用与自然界包裹体分析研究的各种仪器和测试方法的标准,人工合成流体包裹体也越来越获得广泛的认可。目前较为成熟的制作人工包裹体技术是在水溶液环境下愈合矿物裂缝形成包裹体,(±NaC......阅读全文

人工合成流体包裹体的拉曼光谱分析

拉曼光谱分析毛细管样品具有简单、直接、快速、精准等优势,拉曼光谱仪检测毛细管样品不会干扰到样品内流体的信号,同时,由于毛细管具有宏观尺寸,因此,拉曼光谱仪激光束不仅能精确地聚焦到每个相态,而且能够采集到很好的拉曼信号。人工合成的包裹体能够清晰完善的演绎相变过程及特点,为鉴定天然包裹体的准确观测奠定了

拉曼光谱分析简介

  拉曼光谱(Raman spectra),是一种散射光谱。拉曼光谱分析法是基于印度科学家C.V.拉曼(Raman)所发现的拉曼散射效应,对与入射光频率不同的散射光谱进行分析以得到分子振动、转动方面信息,并应用于分子结构研究的一种分析方法。

拉曼光谱的光谱分析

实验做出的谱图(见附图,以波长为单位)标准的谱图(如下,以波数为单位)通过的结构分析解释光谱:分子为四面体结构,一个碳原子在中心,四个氯原子在四面体的四个顶点。当四面体绕其自身的一轴旋转一定角度,或记性反演(r—-r)、或旋转加反演之后,分子的几何构形不变的操作称为对称操作,其旋转轴成为对称轴。CC

拉曼光谱的光谱分析

实验做出的谱图(见附图,以波长为单位)标准的谱图(如下,以波数为单位)通过的结构分析解释光谱:分子为四面体结构,一个碳原子在中心,四个氯原子在四面体的四个顶点。当四面体绕其自身的一轴旋转一定角度,或记性反演(r—-r)、或旋转加反演之后,分子的几何构形不变的操作称为对称操作,其旋转轴成为对称轴。CC

地化所碳酸岩型稀土矿床中成矿流体研究取得进展

  碳酸岩型稀土矿床是重要的稀土矿床类型,贡献了世界稀土一半以上的资源总量。研究表明,富含稀土元素以及H2O、CO2、F、Cl、S等挥发分的碳酸质岩浆通过持续的分异演化以及后续的富稀土流体出溶,是导致这类矿床形成的重要过程。在这个过程中,稀土元素在岩浆热液流体中高效迁移、沉淀对成矿至关重要,且主要受

拉曼光谱分析的现象介绍

  拉曼散射的光谱。1928年C.V.拉曼实验发现,当光穿过透明介质被分子散射的光发生频率变化,这一现象称为拉曼散射,同年稍后在苏联和法国也被观察到。在透明介质的散射光谱中,频率与入射光频率υ0相同的成分称为瑞利散射;频率对称分布在υ0两侧的谱线或谱带υ0±υ1即为拉曼光谱,其中频率较小的成分υ0-

拉曼光谱分析的原理简介

  拉曼效应起源于分子振动(和点阵振动)与转动,因此从拉曼光谱中可以得到分子振动能级(点阵振动能级)与转动能级结构的知识。用虚的上能级概念可以说明了拉曼效应:  设散射物分子原来处于声子基态,振动能级如图1所示。当受到入射光照射时,激发光与此分子的作用引起的极化可以看作为虚的吸收,表述为声子跃迁到虚

石墨烯拉曼光谱测试详解-(三)有缺陷的拉曼光谱分析

众所周知,石墨烯是一种零带隙的二维原子晶体材料,为了适应其快速应用,人们发展了一系列方法来打开石墨烯的带隙,例如:打孔,用硼或氮掺杂和化学修饰等,这样就会给石墨烯引入缺陷,从而对其电学性能和器件性能有很大的影响。拉曼光谱在表征石墨烯材料的缺陷方面具有独特的优势,带有缺陷的石墨烯在1350cm-1附近

几种重要的拉曼光谱分析技术

  提供快速、简单、可重复、且更重要的是无损伤的定性定量分析,它无需样品准备,样品可直接通过光纤探头或者通过玻璃、石英、和光纤测量,此外。。。  ①由于水的拉曼散射很微弱,拉曼光谱是研究水溶液中的生物样品和化学化合物的理想工具。  ②拉曼一次可以同时覆盖50~4000波数的区间,可对有机物及无机物进

关于拉曼光谱的光谱分析介绍

  分子为四面体结构,一个碳原子在中心,四个氯原子在四面体的四个顶点。当四面体绕其自身的一轴旋转一定角度,或记性反演(r—-r)、或旋转加反演之后,分子的几何构形不变的操作称为对称操作,其旋转轴成为对称轴。CCI4有13个对称轴,有案可查4个对称操作。我们知道,N个原子构成的分子有(3N—6)个内部

几种重要的拉曼光谱分析技术

  1、单道检测的拉曼光谱分析技术  2、以CCD为代表的多通道探测器的拉曼光谱分析技术  3、采用傅立叶变换技术的FT-Raman光谱分析技术  4、共振拉曼光谱分析技术  5、表面增强拉曼效应分析技术

拉曼光谱分析仪的维护

1、测定时实验室的温度应在15~30℃,相对湿度应在65%以下,所用电源应配备有稳压装置和接地线。因要严格控制室内的相对湿度,因此红外实验室的面积不要太大,能放得下必须的仪器设备即可,但室内一定要有除湿装置。  2、如所用的是单光朿型傅里叶红外分光光度计(目前应用多),实验室里的CO2含量不能太高,

RaPort手持拉曼光谱分析仪

公司介绍   美国Enspectr光谱仪器有限公司于2009年成立,其科研团队有20多年的拉曼光谱技术经验,在科研、半导体与太阳能、制药、环境、水处理、化学过程监测、地质等行业为广大客户提供专业解决方案。 仪器名称:Enspectr手持拉曼光谱分

拉曼光谱分析-id/ig怎么计算

找到材料Raman光谱中的 D峰,和G峰。然后读出最强位置的光谱强度,两者做比值即可。一般计算中,就用峰的最大值代表峰的强度即可。

拉曼光谱分析鉴别毒品的相关应用

  常见毒品均有相当丰富的拉曼特征位移峰,且每个峰的信噪比较高,表明用拉曼光谱法对毒品进行成分分析方法可行,得到的谱图质量较高。由于激光拉曼光谱具有微区分析功能,即使毒品和其它白色粉末状物质混和在一起,也可以通过显微分析技术对其进行识别,得到毒品和其它白色粉末分别的拉曼光谱图。  利用拉曼光谱可以监

拉曼光谱在宝石研究中的应用

拉曼光谱技术已被成功地应用于宝石学研究和宝石鉴定领域。拉曼光谱技术可以准确地鉴定宝石内部的包裹体,提供宝石的成因及产地信息,并且可以有效、快速、无损和准确地鉴定宝石的类别——天然宝石、人工合成宝石和优化处理宝石。(1)拉曼光谱在宝石包裹体研究中的应用拉曼光谱可以用于宝石包裹体化学成分的定性、定量检测

拉曼光谱在宝石研究中的应用

  拉曼光谱技术已被成功地应用于宝石学研究和宝石鉴定领域。拉曼光谱技术可以准确地鉴定宝石内部的包裹体,提供宝石的成因及产地信息,并且可以有效、快速、无损和准确地鉴定宝石的类别——天然宝石、人工合成宝石和优化处理宝石。  (1)拉曼光谱在宝石包裹体研究中的应用  拉曼光谱可以用于宝石包裹体化学成分的定

有那几种重要的拉曼光谱分析技术

  ①单道检测的拉曼光谱分析技术;  ②以CCD为代表的多通道探测器用于拉曼光谱的检测仪的分析技术;  ③采用傅立叶变换技术的FT-Raman光谱分析技术;  ④共振拉曼光谱分析技术;  ⑤表面增强拉曼效应分析技术;

关于几种重要的拉曼光谱分析技术介绍

  1、单道检测的拉曼光谱分析技术  2、以CCD为代表的多通道探测器的拉曼光谱分析技术  3、采用傅立叶变换技术的FT-Raman光谱分析技术  4、共振拉曼光谱分析技术  5、表面增强拉曼效应分析技术

如何通过拉曼光谱分析石墨烯层数

实验做出的谱图(见附图,以波长为单位)标准的谱图(如下,以波数为单位)通过的结构分析解释光谱:分子为四面体结构,一个碳原子在中心,四个氯原子在四面体的四个顶点。当四面体绕其自身的一轴旋转一定角度,或记性反演(r—-r)、或旋转加反演之后,分子的几何构形不变的操作称为对称操作,其旋转轴成为对称轴。CC

拉曼光谱技术在宝石研究中的应用

  拉曼光谱的分析方法不需要对样品进行前处理,也没有样品的制备过程,避免了一些误差的产生,并且在分析过程中操作简便,测定时间短,灵敏度高等优点。  拉曼光谱技术已被成功地应用于宝石学研究和宝石鉴定领域。拉曼光谱技术可以准确地鉴定宝石内部的包裹体,提供宝石的成因及产地信息,并且可以有效、快速、无损和准

拉曼光谱的7大应用及优缺点分析

拉曼光谱技术以其信息丰富、制样简单、水的干扰小等独特优点,在化学、材料、物理、高分子、生物、医药、地质等领域有着广泛的应用。   1、拉曼光谱在化学研究中的应用   拉曼光谱在有机化学方面主要是用作结构鉴定和分子相互作用的手段,它与红外光谱互为补充,可以鉴别特殊的结构特征

拉曼光谱的7大应用及优缺点分析

  拉曼光谱技术以其信息丰富、制样简单、水的干扰小等独特优点,在化学、材料、物理、高分子、生物、医药、地质等领域有着广泛的应用。  1、拉曼光谱在化学研究中的应用  拉曼光谱在有机化学方面主要是用作结构鉴定和分子相互作用的手段,它与红外光谱互为补充,可以鉴别特殊的结构特征或特征基团。拉曼位移的大小、

高分子、晶体、宝石、文物、生物、化学等七大领域的拉曼应用

  1、拉曼光谱在化学研究中的应用   拉曼光谱在有机化学方面主要是用作结构鉴定和分子相互作用的手段,它与红外光谱互为补充,可以鉴别特殊的结构特征或特征基团。拉曼位移的大小、强度及拉曼峰形状是鉴定化学键、官能团的重要依据。利用偏振特性,拉曼光谱还可以作为分子异构体判断的依据。

高分子、晶体、宝石、文物、生物、化学等七大领域的拉曼应用

  1、拉曼光谱在化学研究中的应用  拉曼光谱在有机化学方面主要是用作结构鉴定和分子相互作用的手段,它与红外光谱互为补充,可以鉴别特殊的结构特征或特征基团。拉曼位移的大小、强度及拉曼峰形状是鉴定化学键、官能团的重要依据。利用偏振特性,拉曼光谱还可以作为分子异构体判断的依据。  在无机化合物中金属离子

红外光谱与拉曼光谱分析方法的区别

红外光谱又叫做红外吸收光谱,它是红外光子与分子振动、转动的量子化能级共振产生吸收而产生的特征吸收光谱曲线。要产生这一种效应,需要分子内部有一定的极性,也就是说存在分子内的电偶极矩。在光子与分子相互作用时,通过电偶极矩跃迁发生了相互作用。因此,那些没有极性的分子或者对称性的分子,因为不存在电偶极矩,基

激光拉曼光谱分析氢同位素的应用

摘 要 拉曼光谱作为一种物质结构和成分分析的测试手段而被广泛应用。介绍分析了激光拉曼光谱法用于氢同位素分析的可行性,并综述介绍了国内外研究人员利用激光拉曼光谱在氚参与的放射反应监测分析、氢同位素定性检测、定量分析方法研究等方面开展的工作。    氢同位素氕、氘、氚的定性和定量分析在核技术研究、氢能源

红外光谱与拉曼光谱分析方法的区别

红外光谱又叫做红外吸收光谱,它是红外光子与分子振动、转动的量子化能级共振产生吸收而产生的特征吸收光谱曲线。要产生这一种效应,需要分子内部有一定的极性,也就是说存在分子内的电偶极矩。在光子与分子相互作用时,通过电偶极矩跃迁发生了相互作用。因此,那些没有极性的分子或者对称性的分子,因为不存在电偶极矩,基

拉曼光谱分析法分析物质性质

  通过对拉曼光谱的分析可以知道物质的振动转动能级情况,从而可以鉴别物质,分析物质的性质。  天然鸡血石和仿造鸡血石的拉曼光谱有本质的区别:前者主要是地开石和辰砂的拉曼光谱,后者主要是有机物的拉曼光谱,利用拉曼光谱可以区别二者。  天然鸡血石“地”的主要成分为地开石,天然鸡血石样品“血”既有辰砂又有