芯片毛细管凝胶电泳
在蛋白质组学和蛋白质分离研究中,凝胶电泳是广泛使用的分离技术。它是以凝胶等聚合物作为分离介质,利用其网络结构并依据被测组分的分子体积不同而进行分离的一种分离模式。在芯片上采用凝胶电泳模式分离蛋白质,更有利于实现分离操作的高速度和高效率。Yao等采用十二烷基磺酸钠(SDS)凝胶电泳分离模式,对比了芯片SDS毛细管凝胶电泳与常规毛细管凝胶电泳系统分离蛋白质的性能,结果表明前者的分离效率明显优于后者,分离时间也明显低于后者。与常规毛细管凝胶电泳相同,芯片毛细管凝胶电泳常用的筛分介质也分为凝胶和非胶聚合物溶液两种。交联聚丙烯酰胺凝胶是广泛使用的一种凝胶筛分介质,Herr等首次将传统的SDS-聚丙烯酰胺凝胶电泳(SDS·PAGE)分离蛋白质的方法移植到芯片上,采用光聚合的方法在芯片通道内制备浓度为6%的交联聚丙烯酰胺凝胶作为筛分介质,在30S的时间内对相对分子质量(M,)在5 500~39 000之问的5种蛋白质进行分离,分离距离仅为4 ......阅读全文
芯片毛细管凝胶电泳
在蛋白质组学和蛋白质分离研究中,凝胶电泳是广泛使用的分离技术。它是以凝胶等聚合物作为分离介质,利用其网络结构并依据被测组分的分子体积不同而进行分离的一种分离模式。在芯片上采用凝胶电泳模式分离蛋白质,更有利于实现分离操作的高速度和高效率。Yao等采用十二烷基磺酸钠(SDS)凝胶电泳分离模式,对比了芯片
毛细管电泳芯片毛细管凝胶电泳
芯片毛细管凝胶电泳在蛋白质组学和蛋白质分离研究中,凝胶电泳是广泛使用的分离技术。它是以凝胶等聚合物作为分离介质,利用其网络结构并依据被测组分的分子体积不同而进行分离的一种分离模式。在芯片上采用凝胶电泳模式分离蛋白质,更有利于实现分离操作的高速度和高效率。Yao等采用十二烷基磺酸钠(SDS)凝胶电泳分
芯片毛细管区带电泳
毛细管区带电泳是芯片毛细管电泳分离蛋白质的一种最基本的分离模式。它基于不同的蛋白质分子在电场中的迁移速率不同而实现分离,是一种简单、快速的分离方法。采用区带电泳分离模式已成功地分离了多种蛋白质样品。Colyer等采用毛细管电泳芯片,以区带电泳模式对人血清蛋白样品进行了分离,可分辨出4个蛋白质区带(即
芯片胶束电动毛细管电泳
胶束电动毛细管电泳是毛细管电泳与胶束增溶色谱相结合的分离技术,其原理是在装有胶束溶液的通道内,溶质组分在电场力的作用下根据其在胶束相和水相之问的分配不同而产生分离。Jin等在玻璃芯片上采用胶束电动色谱的分离模式,以Bio-Rad公司的CE·SDS缓冲液作为分离介质,成功实现了相对分子质量在14 40
毛细管电泳芯片毛细管区带电泳
芯片毛细管区带电泳毛细管区带电泳是芯片毛细管电泳分离蛋白质的一种最基本的分离模式。它基于不同的蛋白质分子在电场中的迁移速率不同而实现分离,是一种简单、快速的分离方法。采用区带电泳分离模式已成功地分离了多种蛋白质样品。Colyer等采用毛细管电泳芯片,以区带电泳模式对人血清蛋白样品进行了分离,可分辨出
毛细管电泳芯片胶束电动毛细管电泳
芯片胶束电动毛细管电泳胶束电动毛细管电泳是毛细管电泳与胶束增溶色谱相结合的分离技术,其原理是在装有胶束溶液的通道内,溶质组分在电场力的作用下根据其在胶束相和水相之问的分配不同而产生分离。Jin等在玻璃芯片上采用胶束电动色谱的分离模式,以Bio-Rad公司的CE·SDS缓冲液作为分离介质,成功实现了相
毛细管凝胶电泳技术介绍
中文名称毛细管凝胶电泳英文名称capillary gel electrophoresis;CGE定 义将凝胶移到毛细管中作支持物进行的一种电泳。由于溶质分子体积不同,在起分子筛作用的聚合物内进行电泳时被分离。适用于生物大分子的分析及PCR产物分析。应用学科生物化学与分子生物学(一级学科),方法与技
毛细管凝胶电泳仪简介
毛细管凝胶电泳仪(CGE)是20世纪80年代后期发展起来的毛细管电泳分离模式。它是将凝胶电泳仪对生物大分子的分离能力与毛细管电泳仪的快速、微量和定量分析相结合,是当今分离度极高的一种分离技术。一、工作原理:将聚丙烯酰胺等在毛细管中交联生成凝胶,以凝胶作为载体进行电泳,凝胶具有多孔性,类似分子筛的作用
毛细管电泳芯片自由流电泳
芯片自由流电泳除上述分离模式外,芯片自由流电泳也是芯片电泳分离蛋白质的重要方法。芯片自由流电泳是指在芯片中通过外加电场使样品随缓冲液连续流动的同时沿电场方向进行电迁移,从而按照电泳淌度不同实现分离的电泳分离模式。Raymond等采用芯片自由流电泳模式分离了人血清蛋白、缓激肽和核糖核酸酶A,其分离长度
高效毛细管凝胶电泳仪简介
高效毛细管凝胶电泳仪(CGE)是20世纪80年代后期发展起来的毛细管电泳分离模式。它是将凝胶电泳仪对生物大分子的高效分离能力与毛细管电泳仪的快速、微量和定量分析相结合,是当今分离度极高的一种分离技术。一、工作原理: 将聚丙烯酰胺等在毛细管中交联生成凝胶,以凝胶作为载体进
毛细管凝胶电泳定义和应用介绍
中文名称毛细管凝胶电泳英文名称capillary gel electrophoresis;CGE定 义将凝胶移到毛细管中作支持物进行的一种电泳。由于溶质分子体积不同,在起分子筛作用的聚合物内进行电泳时被分离。适用于生物大分子的分析及PCR产物分析。应用学科生物化学与分子生物学(一级学科),方法与技
高效毛细管凝胶电泳仪简介
高效毛细管凝胶电泳仪(CGE)是20世纪80年代后期发展起来的毛细管电泳分离模式。它是将凝胶电泳仪对生物大分子的高效分离能力与毛细管电泳仪的快速、微量和定量分析相结合,是当今分离度极高的一种分离技术。一、工作原理: 将聚丙烯酰胺等在毛细管中交联生成凝胶,以凝胶作为载体
毛细管凝胶电泳的原理与应用
毛细管电泳技术(Capillary Electrophoresis, CE)又称高效毛细管电泳(HPCE)或毛细管分离法(CESM),是一类以毛细管为分离通道、以高压直流电场为驱动力,根据样品中各组分之间迁移速度和分配行为上的差异而实现分离的一类液相分离技术,迅速发展于80年代中后期,它实际上包
芯片毛细管电泳分离模式介绍
芯片毛细管电泳分离蛋白质主要采用区带电泳、凝胶电泳、等电聚焦、胶束电动色谱及二维电泳等模式。
毛细管电泳芯片等电聚焦分离
芯片等电聚焦分离芯片等电聚焦分离蛋白质的原理与常规毛细管等电聚焦基本相同,都是依据蛋白质的等电点(pI)不同而进行分离。Hofmann等首次将毛细管等应用于蛋白质分析。Li等在PDMS芯片和聚碳酸酯(PC)芯片上,采用等电聚焦模式分离厂牛血清白蛋白和增强型绿色荧光蛋白(EGFP)。Das等。26 3
毛细管凝胶电泳色谱仪支持介质
毛细管凝胶电泳色谱仪(CGE)是将聚丙烯酰胺等在毛细管中交联生成网状多孔凝胶,以凝胶作为支持介质进行电泳。它是将常规凝胶电泳仪对生物大分子的分离能力与毛细管电泳仪的快速、微量和定量分析相结合,是当今分离度极高的一种分离技术。一、支持介质特性:采用聚丙烯酰胺凝胶作为支持介质的目是防止CGE电泳过程中分
毛细管凝胶电泳色谱仪分析技术
毛细管凝胶电泳色谱仪(CGE)是20世纪80年代后期发展起来的毛细管电泳分离模式。它是将常规凝胶电泳仪对生物大分子的分离能力与毛细管电泳仪的快速、微量和定量分析相结合,是当今分离度极高的一种分离技术。一、载体特性:采用聚丙烯酰胺凝胶作为载体的目是防止CGE电泳过程中分子的对流和扩散,使待测组分得到更
毛细管凝胶电泳色谱仪工作原理
毛细管凝胶电泳色谱仪(CGE)是20世纪80年代后期发展起来的毛细管电泳分离模式。它是将常规凝胶电泳仪对生物大分子的分离能力与毛细管电泳仪的快速、微量和定量分析相结合,是当今分离度极高的一种分离技术。聚丙烯酰胺凝胶是CGE的理想载体,将聚丙烯酰胺等在毛细管中交联生成网状多孔凝胶,以凝胶作为载体进行电
毛细管电泳微流控芯片毛细管电泳技术展望
微流控芯片毛细管电泳系统应用于蛋白质的分离分析具有突出的优越性,特别是在临床检验及现场监测等方面的应用具有良好的发展前景,同时,其对分析仪器的集成化、微型化与便携化的发展也具有重要意义。据文献报道,Renzi等已经研制出手持式的微流控芯片电泳分离蛋白质装置。该装置由电泳芯片、小型激光诱导荧光检测系统
蛋白纯度及异构性的测定LUMEX毛细管凝胶电泳和毛细管...
蛋白纯度及异构性的测定-LUMEX毛细管凝胶电泳和毛细管等电点聚焦
微流控芯片毛细管电泳的特点
芯片毛细管电泳技术将常规的毛细管电泳操作在芯片上进行,利用玻璃、石英或各种聚合物材料加工微米级通道,以高压直流电场为驱动力,对样品进行进样、分离及检测。它与常规毛细管电泳的分离原理相同,因此在分离生物大分子样品方面具有优势。此外,与常规毛细管电泳系统相比,芯片毛细管电泳系统还具备分离时间短、分离效率
微流控芯片毛细管电泳的特点
芯片毛细管电泳技术将常规的毛细管电泳操作在芯片上进行,利用玻璃、石英或各种聚合物材料加工微米级通道,以高压直流电场为驱动力,对样品进行进样、分离及检测。它与常规毛细管电泳的分离原理相同,因此在分离生物大分子样品方面具有优势。此外,与常规毛细管电泳系统相比,芯片毛细管电泳系统还具备分离时间短、分离效率
毛细管电泳芯片二维电泳分离
芯片二维电泳分离芯片毛细管电泳应用的成功促进了高速高效的芯片二维电泳技术的发展。对于多组分的复杂蛋白质样品,采用传统的一维分离方法通常无法满足要求,需要采用二维分离技术来提高分离效率,增加峰容量。与传统的毛细管电泳系统相比,在芯片上进行二维电泳分离,可以通过设计芯片通道结构实现通道的直接交叉或连通,
芯片二维电泳分离
芯片毛细管电泳应用的成功促进了高速高效的芯片二维电泳技术的发展。对于多组分的复杂蛋白质样品,采用传统的一维分离方法通常无法满足要求,需要采用二维分离技术来提高分离效率,增加峰容量。与传统的毛细管电泳系统相比,在芯片上进行二维电泳分离,可以通过设计芯片通道结构实现通道的直接交叉或连通,而无需制作复杂
芯片的高效高速毛细管电泳(CE)分离系统
近年来该技术发展迅速,在蛋白质、脱氧核糖核酸(DNA)等生物大分子的分离分析中表现出了显著的优越性。20世纪90年代初,Manz和Widmer等首次提出了以微机电加工技术(microelectromechanical systems,MEMS)和分析化学为基础的微全分析系统(miniaturiz
毛细管电泳的模式都有什么
毛细管区带电泳(较多)胶束电动毛细管色谱毛细管凝胶电泳毛细管等速电泳毛细管等电聚焦电泳毛细管电色谱(新近发展)芯片毛细管电泳(最前沿)
毛细管电泳类型
毛细管电泳类型类型缩写说明1 单根毛细管毛细管区带电泳CZE毛细管和电极槽灌有相同的缓冲液毛细管等速电泳CITP使用两种不同的CZE 缓冲液毛细管等电聚焦CIEF管内装pH 梯度介质,相当于pH 梯度CZE胶束电动毛细管色谱MEKC在CZE 缓冲液中加入一种或多种胶束微乳液毛细管电动色谱MEEKC在
毛细管电泳的类型
毛细管电泳类型类型缩写说明1 单根毛细管毛细管区带电泳CZE毛细管和电极槽灌有相同的缓冲液毛细管等速电泳CITP使用两种不同的CZE 缓冲液毛细管等电聚焦CIEF管内装pH 梯度介质,相当于pH 梯度CZE胶束电动毛细管色谱MEKC在CZE 缓冲液中加入一种或多种胶束微乳液毛细管电动色谱MEEKC在
岛津Pittcon推出MCE202-MultiNA微芯片电泳系统
可重复使用的芯片,帮助削减电泳成本 2008 2008年3月3日 岛津的MCE-202 MultiNA是一个完全自动的芯片毛细管电泳分析仪,用于DNA/RNA快速分析(正在申请ZL)。在推荐的条件下,芯片在更换之前可以处理3,600或更多次分析之前,并且没有被检测到的交叉污染。 MultiN
毛细管电泳根据分离模式分类
毛细管电泳根据分离模式不同可以归结出多种不同类型的毛细管电泳。毛细管电泳的多种分离模式,给样品分离提供了不同的选择机会,这对复杂样品的分离分析是非常重要的。毛细管电泳类型类型缩写说明1 单根毛细管毛细管区带电泳CZE毛细管和电极槽灌有相同的缓冲液毛细管等速电泳CITP使用两种不同的CZE 缓冲液毛细