Antpedia LOGO WIKI资讯

原子力显微镜(AFM)与扫描隧道显微镜(STM)的差别

原子力显微镜(AFM)与扫描隧道显微镜(STM)最大的差别在于并非利用电子隧道效应,而是利用原子之间的范德华力(Van Der Waals Force)作用来呈现样品的表面特性。假设两个原子中,一个是在悬臂(cantilever)的探针尖端,另一个是在样本的表面,它们之间的作用力会随距离的改变而变化,其作用力与距离的关系如“图1”所示,当原子与原子很接近时,彼此电子云斥力的作用大于原子核与电子云之间的吸引力作用,所以整个合力表现为斥力的作用,反之若两原子分开有一定距离时,其电子云斥力的作用小于彼此原子核与电子云之间的吸引力作用,故整个合力表现为引力的作用。若以能量的角度来看,这种原子与原子之间的距离与彼此之间能量的大小也可从Lennard –Jones的公式中到另一种印证。......阅读全文

对比学习扫描隧道显微镜(STM)与原子力显微镜(AFM)

  1 STM  1.1 STM工作原理  扫描隧道显微镜的基本原理是将原子线度的极细探针和被研究物质的表面作为两个电极,当样品与针尖的距离非常接近(通常小于1nm)时,在外加电场的作用下,电子会穿过两个电极之间的势垒流向另一电极。  尖锐金属探针在样品表面扫描,利用针尖-样品间纳米间隙的量子隧道效

扫描隧道显微镜(STM)与原子力显微镜(AFM)的对比

1.1 STM工作原理扫描隧道显微镜的基本原理是将原子线度的极细探针和被研究物质的表面作为两个电极,当样品与针尖的距离非常接近(通常小于1nm)时,在外加电场的作用下,电子会穿过两个电极之间的势垒流向另一电极。尖锐金属探针在样品表面扫描,利用针尖-样品间纳米间隙的量子隧道效应引起隧道电流与间隙大小呈

SPM纳米加工技术

       提示:扫描探针显微镜( scanning probe microscopes,SPM),包括扫描隧道显微镜( STM)、原子力显微镜(AFM)、激光力显微镜(LFM)、磁力显微镜(MFM)等。SPM成为人类在纳米尺度上,观察、改造世界的一种新工具

原子力显微镜法测量纳米粒子的尺寸

原子力显微镜(Atomic Force Microscopy, AFM)是继扫描隧道显微镜(Scanning Tunneling Microscopy, STM)之后发明的一种具有原子级高分辨的新型仪器,可以在大气和液体环境下对各种材料和样品进行纳米区域的物理性质包括形貌进行探测。本标准文本将概述纳

原子力显微镜原理:接触式,非接触式,轻敲式有何区别?

由于STM侷限于试片的导电性质,使得应用范围大大的减少,为了能有更广泛的应用科用,故改用力场作回馈而发展出原子显微仪(atomic force microscope, AFM),而因为对导体及绝缘体均有三维空间的显影能力,所以成为运用最广泛的扫描探针显微仪。图4-1为原子力显微镜的简单示意图。 图4

原子力显微镜扫描样品表面形貌,通过什么方式驱动探针

原子力显微镜:是一种利用原子,分子间的相互作用力来观察物体表面微观形貌的新型实验技术.它有一根纳米级的探针,被固定在可灵敏操控的微米级弹性悬臂上.当探针很靠近样品时,其顶端的原子与样品表面原子间的作用力会使悬臂弯曲,偏离原来的位置.根据扫描样品时探针的偏离量或振动频率重建三维图像.就能间接获得样品表

扫描电子显微镜在材料科学研究中都有哪些应用

它主要由带针尖的微悬臂、微悬臂运动检测装置、监控其运动的反馈回路、使样品进行扫描的压电陶瓷扫描器件、计算机控制的图像采集、显示及处理系统组成。微悬臂运动可用如隧道电流检测等电学方法或光束偏转法、干涉法等光学方法检测,当针尖与样品充分接近相互之间存在短程相互斥力时,检测该斥力可获得表面原子级分辨图像,

原子力显微镜(AFM)仪器结构及优缺点

优缺点优点原子力显微镜观察到的图像相对于扫描电子显微镜,原子力显微镜具有许多优点。不同于电子显微镜只能提供二维图像,AFM提供真正的三维表面图。同时,AFM不需要对样品的任何特殊处理,如镀铜或碳,这种处理对样品会造成不可逆转的伤害。第三,电子显微镜需要运行在高真空条件下,原子力显微镜在常压下甚至在液

扫描探针显微镜对几种纳米材料的结构表征研究

     1982年,Gerd Binning及其合作者在IBM公司苏黎世实验室共同研制成功了第一台扫描隧道显微镜(scanning tunneling microscope,STM),其发明人Binning 因此获得1986 年的诺贝尔物理奖。扫描隧道显微镜的工作原理

原子力显微镜的工作原理是什么,有哪些主要部件?

原子力显微镜(Atomic Force Microscope ,AFM),一种可用来研究包括绝缘体在内的固体材料表面结构的分析仪器。它通过检测待测样品表面和一个微型力敏感元件之间的极微弱的原子间相互作用力来研究物质的表面结构及性质。将一对微弱力极端敏感的微悬臂一端固定,另一端的微小针尖接近样品,这时

原子力显微镜采用接触模式时,对待测样品有何要求

原子力显微镜(Atomic Force Microscope ,AFM),一种可用来研究包括绝缘体在内的固体材料表面结构的分析仪器。它通过检测待测样品表面和一个微型力敏感元件之间的极微弱的原子间相互作用力来研究物质的表面结构及性质。将一对微弱力极端敏感的微悬臂一端固定,另一端的微小针尖接近样品,这时

原子力显微镜采用接触模式时,对待测样品有何要求?

原子力显微镜(Atomic Force Microscope ,AFM),一种可用来研究包括绝缘体在内的固体材料表面结构的分析仪器。它通过检测待测样品表面和一个微型力敏感元件之间的极微弱的原子间相互作用力来研究物质的表面结构及性质。将一对微弱力极端敏感的微悬臂一端固定,另一端的微小针尖接近样品,这时

原子力显微镜(AFM)的工作原理

原子力显微镜(atomic force microscope,简称AFM)利用微悬臂感受和放大悬臂上尖细探针与受测样品原子之间的作用力,从而达到检测的目的,具有原子级的分辨率。由于原子力显微镜既可以观察导体,也可以观察非导体,从而弥补了扫描隧道显微镜的不足。原子力显微镜是由IBM公司苏黎世研究中心的

AFM检测技术

      原子力显微镜(Atomic Forcc Microscopc,AFM),也称扫描力显微镜(scanning FOrccMicroscopc,sFM),是一种纳米级高分辨的扫描探针显微镜,优于光学衍射极限1000倍。 ADM811原子力显微镜是由IBM公司苏黎

原子力显微镜的原理及优缺点

  原子力显微镜(Atomic Force Microscopy, AFM)是由IBM 公司的Binnig与史丹佛大学的Quate 于一九八五年所发明的,其目的是为了使非导体也可以采用扫描探针显微镜(SPM)进行观测。   原子力显微镜的基本原理是:将一个对微弱力极敏感的微悬臂一端固定,另

计量型原子力显微镜

     第一台在纳米测量中,在中等测量范围内,具有微型光纤传导激光干涉三维测量系统、可自校准和进行绝对测量的计量型原子力显微镜。它的诞生,可使目前用于纳米技术研究的扫描隧道显微镜定量化,并将其所测量的纳米量值直接与米定义相衔接。使人们更加准确地了解纳米范围内的各种物理

扫描探针显微镜的分类有哪些?

 扫描探针显微镜不是简单成像的显微镜,而是可以用于在原子、分子尺度进行加工和操作的工具。扫描探针显微镜的应用领域是宽广的,无论是物理、化学、生物、医学等基础学科,还是材料、微电子等应用学科都有用武之地。扫描探针显微镜的种类  扫描探针显微镜主要可分为扫描隧道显微镜(STM)、原子力显微镜(AFM)、

探究扫描探针显微镜工作原理

扫描探针显微镜是一种新型的探针显微镜,是从扫描隧道显微镜的基础上发展起来的各种新型探针显微镜(原子力显微镜,静电力显微镜,磁力显微镜,扫描离子电导显微镜,扫描电化学显微镜等)的统称。它是近年来世界上迅速发展起来的一种表面分析仪器。扫描探针显微镜原理及结构:扫描探针显微镜的基本工作原理是利用探针与样品

扫描探针显微镜的最新技术进展及应用

扫描探针显微镜(SPM s )是用来探测表面性质的仪器家族,是由B inn ig 和Roh rer 等人最早于1982年发明[1]。虽然SPM 在目前可以测量许多表面的其它性质,但是揭示表面形貌一直是它的主要应用目的。SPM 是我们这个时代中最为有力的表面测量工具,其测量表面特征的尺寸可以从原子间距

常用材料测试方法总结

成分分析:  成分分析按照分析对象和要求可以分为 微量样品分析 和 痕量成分分析 两种类型。 按照分析的目的不同,又分为体相元素成分分析、表面成分分析和微区成分分析等方法。  体相元素成分分析是指体相元素组成及其杂质成分的分析,其方法包括原子吸收、原子发射ICP、质谱以及X射线荧光与X射线衍射分析方

经典材料分析七种方法:成分,光谱,质谱 ,能谱

  材料的逆向分析是现行材料研发中的重要的手段,也是实现材料研发中的最经济、最有效的的研发手段。如何实现材料的逆向分析,从认识材料的分析仪器着手。  成分分析简介  成分分析技术主要用于对未知物、未知成分等进行分析,通过成分分析技术可以快速确定目标样品中的各种组成成分是什么,帮助您对样品进行定性定量

原子力显微镜的原理、结构

      原子力显微镜(AFM)用一个微小的探针来“摸索”微观世界,它超越了光和电子波长对显微镜分辨率的限制,在立体三维上观察物质的形貌,并能获得探针与样品相互作用的信息。原子力显微镜具有分辨率高、操作容易、样品准备简单、操作环境不受限制、分辨率高等优点。因此,原子力

材料形貌分析

相貌分析的主要内容是分析材料的几何形貌,材料的颗粒度,及颗粒度的分布以及形貌微区的成份和物相结构等方面。形貌分析方法主要有:光学显微镜(Opticalmicroscopy,OM)、扫描电子显微镜(Scanningelectron microscopy, SEM)、透射电子显微镜(Transmis

AES、STM、AFM的区别

AES、STM、AFM的区别主要是名称不同、工作原理不同、作用不同、一、名称不同1、AES,英文全称:Auger Electron Spectroscopy,中文称:俄歇电子能谱2、STM,英文全称: Scanning Tunneling Microscope,中文称:扫描隧道显微镜3、AFM,英文

扫描探针显微镜扫描器运动误差的研究

对由压电陶瓷的压电误差造成的扫描探针显微镜扫描器的运动误差进行了较详细的实验研究和理论分析,分析了各项误差的产生原因及其实验现象,据此可对误差进行判断和修正。  1 概述  扫描探针显微镜(Scanning Probe Microscope,简称SPM)是指包括扫描隧道显微镜[1](Scanning

扫描探针显微镜功不可没的历史发展

p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; line-height: 19.0px; font: 13.0px 'Helvetica Neue'} p.p2 {margin: 0.0px 0.0px 0.0px 0.0px; line-height: 19.0px

导电型原子力显微镜的研制和应用研究

     扫描隧道显微镜只能测量导电的样品,原子力显微镜对样品是否导电没有特殊要求,但是无法测量样品导电性。在实际应用中,更多的研究对象是导电质与非导电质的混合物。特别是近年来人们感兴趣的金属有机复合材料、纳米颗粒镶嵌材料、纳米电子学等方面,都涉及到局域导电性及非导电性

AFM工作原理是什么?

       AFM的基本原理与STM类似,在AFM中,使用对微弱力非常敏感的弹性悬臂上的针尖对样品表面作光栅式扫描。当针尖和样品表面的距离非常接近时,针尖尖端的原子与样品表面的原子之间存在极微弱的作用力(10-12~10-6N),此时,微悬臂就会发生微小的弹

扫描探针显微镜的原理、结构、特点

        扫描探针显微镜是在扫描隧道显微镜的基础上发展起来的各种新型探针显微镜(原子力显微镜,静电力显微镜,磁力显微镜,扫描离子电导显微镜,扫描电化学显微镜等)的统称,是国际上近年发展起来的表面分析仪器。扫描探针显微镜原理及结构   

“争取部分先超越”

“争取部分先超越”——姚骏恩院士谈仪器仪表的研制策略 中国仪器仪表问题系列报道(之四)         “关于科研仪器的研制,目前我国步入了‘天时地利人和’时期。所谓‘天时’,指中国经济发展到今天,国家有了一定实力;‘地利’,