科学家编制出光合作用蛋白质目录

美国卡内基学院、加利福尼亚大学洛杉矶分校与美国能源部联合研究院利用先进的计算机工具,分析了28种植物中与光合作用相关的基因组,编制出与光合作用有关的597个编码基因蛋白的详细目录,从而可更好地从基因学角度研究支撑植物生理与生态的各种生物过程。研究论文发表在最新一期《生物化学杂志》上。 这597个来自植物和绿藻基因组的编码蛋白,称为GreenCut蛋白质,是光合生物特有的蛋白。其中286个是当前已知的功能蛋白,剩下的311个尚无法与特定的生物过程联系起来。 叶绿体是进行光合作用的工作间,有52%的GreenCut蛋白质位于叶绿体上。目前人们普遍认为,叶绿体是从一种能进行光合作用的单细胞细菌——藻青菌进化而来。大约15亿年前,藻青菌被更加复杂的、不能进行光合作用的细胞所吞噬,两种生物之间形成了最早的共生关系。在进化过程中,藻青菌将它的大部分基因信息转移给了宿主生物的细胞核,丧失了独立生存能力。 “这种基因减退的......阅读全文

叶绿体、叶绿素植物光合作用的工作车间

植物体是一个进行光合作用、生产有机物质的绿色工厂,叶片就是车间,叶绿体和叶绿素是把光能转换成化学能,生产有机物质的能量转换器,因此叶面积与叶绿素是影响光合产量的又一主要因子。叶面积的测量可以使用便携式叶面积测定仪来进行操作,而叶绿素含量的测量可以使用叶绿素计是一款专业的测量叶绿素的仪器,下面就来进行

研究发现叶绿体蛋白质传...

  叶绿体是植物和藻类细胞中可以通过光合作用将光能转化为化学能的细胞器。作为一种由两层膜包被的特殊细胞器,叶绿体含有其自身的基因组,其表达是与核基因组的表达紧密协调的。叶绿体的蛋白质有两种来源,有一小部分(50-200个)是由叶绿体基因组编码,而大多数的其它叶绿体蛋白质(2000-3000个)则是由

人工光合作用的里程碑:人造“叶绿体”的实现

  研究背景  绿色植物的叶绿体是发生光反应和暗反应的重要场所。光反应将光能转化为化学能,产生了两种重要的能量载体,即三磷酸腺苷和还原态磷酸二核苷酸烟酰胺(NADPH)。而暗反应则利用这两种高能分子驱动CO2分子的捕获,进而合成生物质分子。  总之,叶绿体既是光能转化为化学能的场所,又是CO2固定及

拟南芥叶绿体蛋白质组学分析实验

试剂、试剂盒 HEPES-KOH山梨醇抗坏血酸维生素 C半胱氨酸PF-Percoll仪器、耗材 浓缩离心设备实验步骤 建议在短日照条件下培养材料以诱导营养生长,并在照光的早期收取材料以提高获得完整叶绿体的产率。所以试剂应在收集材料之前准备好,并连同其他一些设备,如离心机转头及离心管等在冰箱或冰上冷却

拟南芥叶绿体蛋白质组学分析实验

试剂、试剂盒HEPES-KOH山梨醇抗坏血酸维生素 C半胱氨酸PF-Percoll仪器、耗材浓缩离心设备实验步骤建议在短日照条件下培养材料以诱导营养生长,并在照光的早期收取材料以提高获得完整叶绿体的产率。所以试剂应在收集材料之前准备好,并连同其他一些设备,如离心机转头及离心管等在冰箱或冰上冷却至 0

拟南芥叶绿体蛋白质组学分析实验

试剂、试剂盒HEPES-KOH                                                                  山梨醇                                                                  

进行稳定光合作用时叶绿体中ADP和ATP相对含量

有可能是50%且处于动态平衡状态原因:因为我们知道一个ATP需要一个ADP和一个Pi,所以说消耗一个APT就有一个ADP和Pi生成。他们因该是处于动态的平衡状态。

叶绿体是绿色植物进行光合作用的细胞器

  叶绿体具有双层膜。是绿色植物能进行光合作用的细胞含有的细胞器,产生氧气和有机物,是植物细胞的“养料制造车间”和“能量转换站”。双层膜,形状为扁平椭球形或球形,含核糖体可产生DNA和RNA,属于半自主性细胞器。  注:  1、能进行光合作用的细胞并不一定都含有叶绿体,如蓝藻(其中只含有叶绿素); 

关于细胞器—叶绿体的内容介绍

  叶绿体具有双层膜。是绿色植物能进行光合作用的细胞含有的细胞器,产生氧气和有机物,是植物细胞的“养料制造车间”和“能量转换站”。双层膜,形状为扁平椭球形或球形,含核糖体可产生DNA和RNA,属于半自主性细胞器。  1、能进行光合作用的细胞并不一定都含有叶绿体,如蓝藻(其中只含有叶绿素);  2、并

科学家编制出光合作用蛋白质目录

  美国卡内基学院、加利福尼亚大学洛杉矶分校与美国能源部联合研究院利用先进的计算机工具,分析了28种植物中与光合作用相关的基因组,编制出与光合作用有关的597个编码基因蛋白的详细目录,从而可更好地从基因学角度研究支撑植物生理与生态的各种生物过程。研究论文发表在最新一期《生物化学杂志》上。   这5

科学家迈出优化光合作用第一步

  想象一下,如果能够种植可从地球大气中吸收更多二氧化碳的植物,就可以帮助解决气候问题。  近日,丹麦哥本哈根大学的研究人员发现,植物叶片细胞中一组名为CURT1的蛋白质在光合作用中发挥的作用比以前认为的重要得多。相关研究结果发表于美国《国家科学院院刊》。  “我们已经发现CURT1蛋白从种子阶段就

研究发现叶绿体蛋白质传送器的组装原理

  叶绿体是植物和藻类细胞中可以通过光合作用将光能转化为化学能的细胞器。作为一种由两层膜包被的特殊细胞器,叶绿体含有自身的基因组,且其表达是与核基因组的表达紧密协调的。叶绿体的蛋白质有两种来源,有一小部分(50-200个)由叶绿体基因组编码,而大多数的其他叶绿体蛋白质(2000-3000个)则由核基

研究发现叶绿体蛋白质传送器的组装原理

  叶绿体是植物和藻类细胞中可以通过光合作用将光能转化为化学能的细胞器。作为一种由两层膜包被的特殊细胞器,叶绿体含有自身的基因组,且其表达是与核基因组的表达紧密协调的。叶绿体的蛋白质有两种来源,有一小部分(50-200个)由叶绿体基因组编码,而大多数的其他叶绿体蛋白质(2000-3000个)则由核基

研究发现叶绿体蛋白质传送器的组装原理

  叶绿体是植物和藻类细胞中可以通过光合作用将光能转化为化学能的细胞器。作为一种由两层膜包被的特殊细胞器,叶绿体含有自身的基因组,且其表达是与核基因组的表达紧密协调的。叶绿体的蛋白质有两种来源,有一小部分(50-200个)由叶绿体基因组编码,而大多数的其他叶绿体蛋白质(2000-3000个)则由核基

台湾学者耗时七年-《Nature》破解叶绿体谜题

  植物光合作用意义重大,而对光合作用至关重要的叶绿体,其蛋白输入机制依然是一个谜题。  来自台湾中央研究院分子生物研究所的研究人员发表了题为“TIC236 links the outer and inner membrane translocons of the chloroplast”的文章,指

叶绿体亚分级实验——叶绿体亚分级

实验材料叶绿体试剂、试剂盒裂解缓冲液仪器、耗材微量离心管小型离心机实验步骤1. 将含 1 mg 叶绿素的叶绿体悬液吸至一微量离心管中。2. 在小型离心机中 14000 r/min 离心 30 秒钟,弃去上清。3. 加 1 ml 裂解缓冲液,振荡,冰浴 5 分钟。裂解缓冲液:10 mmol/L HEP

叶绿体蛋白转运与质量控制的新机制获揭示

原文地址:http://news.sciencenet.cn/htmlnews/2022/6/481871.shtm 近日,中科院植物研究所研究员杨文强团队与合作者在《植物细胞》发表了最新研究成果,揭示了莱茵衣藻叶绿体基因组最大基因编码的蛋白Orf2971参与蛋白转运和质量控制的重要分子机制。

关于叶绿体DNA的详细介绍

  12个cpDNA分子。叶绿体具有独立基因组,被认为是内共生起源的细胞器。叶绿体基因组是多拷贝的,具有比较保守的环状结构,但也存在着一些例外。叶绿体基因组主要用于编码与光合作用密切相关的一些蛋白和一些核糖体蛋白。叶绿体基因表达调控是在不同水平上进行的,光和细胞分裂素对叶绿体基因的表达也起着重要的调

科学家成功解析叶绿体基因转录蛋白质机器构造

叶绿体中的光合作用将光能转化为化学能,吸收二氧化碳,释放氧气,是地球生物圈的重要塑造者。叶绿体约在15亿年前通过蓝藻内共生进化而来。在进化过程中,叶绿体基因要么被废弃,要么逐渐转移到细胞核染色体中,导致多数陆地植物叶绿体基因组只保留了110-130个基因。其中,大部分基因编码基因转录、蛋白翻译和光合

细胞化学基础叶绿体DNA

chloroplast DNA(cpDNA),存在于叶绿体内的DNA。高等植物叶绿体的DNA为双链共价闭合环状分子,其长度随生物种类而不同,其大小在120kb到217kb之间,相当于噬菌体基因组的大小,例如,T4噬菌体的基因组约165kb。叶绿体DNA不含5-甲基胞嘧啶,这是鉴定cpDNA及其纯度的

关于叶绿体DNA的介绍

  chloroplast DNA(cpDNA),存在于叶绿体内的DNA。高等植物叶绿体的DNA为双链共价闭合环状分子,其长度随生物种类而不同,其大小在120kb到217kb之间,相当于噬菌体基因组的大小,例如,T4噬菌体的基因组约165kb。叶绿体DNA不含5-甲基胞嘧啶,这是鉴定cpDNA及其纯

叶绿体DNA的基本介绍

  chloroplast DNA(cpDNA),存在于叶绿体内的DNA。高等植物叶绿体的DNA为双链共价闭合环状分子,其长度随生物种类而不同,其大小在120kb到217kb之间,相当于噬菌体基因组的大小,例如,T4噬菌体的基因组约165kb。叶绿体DNA不含5-甲基胞嘧啶,这是鉴定cpDNA及其纯

植物“入睡”有“开关”-两种酶起关键作用

  新华社东京8月17日电 许多植物在白天进行光合作用,到了晚上光线较弱的时候也会“入睡”。日本一项新研究说,植物“入睡”要依靠两种酶作为“开关”,这个发现有望用于设计能适应不同环境的作物。   植物通过叶绿体进行光合作用。过去的研究发现,植物在白天光线变强时会“醒来”,叶绿体增强活动,而在晚上光

植物“入睡”有“开关”-两种酶起关键作用

  许多植物在白天进行光合作用,到了晚上光线较弱的时候也会“入睡”。日本一项新研究说,植物“入睡”要依靠两种酶作为“开关”,这个发现有望用于设计能适应不同环境的作物。  植物通过叶绿体进行光合作用。过去的研究发现,植物在白天光线变强时会“醒来”,叶绿体增强活动,而在晚上光线变暗后又会“入睡”,叶绿体

植物“入睡”有“开关”-两种酶起关键作用

  新华社东京8月17日电 许多植物在白天进行光合作用,到了晚上光线较弱的时候也会“入睡”。日本一项新研究说,植物“入睡”要依靠两种酶作为“开关”,这个发现有望用于设计能适应不同环境的作物。   植物通过叶绿体进行光合作用。过去的研究发现,植物在白天光线变强时会“醒来”,叶绿体增强活动,而在晚上光

研究团队揭示叶绿体蛋白转运与质量控制的新机制

  叶绿体是光合作用的场所,也是重要的生物反应器。作为半自主细胞器,叶绿体含有3000多个蛋白,其自身基因组仅编码100个左右蛋白,其他蛋白由核基因组编码并通过叶绿体被膜上的TOC和TIC复合体转运。大部分核基因编码的前体蛋白以未折叠状态进入转运复合体,分子伴侣和蛋白酶组成的质量控制系统可确保所有进

从豌豆组织分离叶绿体实验_叶绿体分离

实验材料叶子组织试剂、试剂盒PBF-Percoll 溶液山梨醇BSAHEPES-KOHEDTA仪器、耗材聚碳酸酯离心管实验步骤1. 制备 Percoll 梯度(1) 两个 50 ml 的聚碳酸酯离心管中分别加入 25 ml 50% 的 PBF-Percoll 溶液。50% PBF-Percoll0.

​叶绿素的结构特点和物理特征

叶绿素(Chlorophyl)是高等植物和其它所有能进行光合作用的生物体含有的一类绿色色素。叶绿素有多种,例如叶绿素a、b、c和d,以及细菌叶绿素和绿菌属叶绿素等,与食品有关的主要是高等植物中的叶绿素a和b两种。其结构共同特点是结构中包括四个吡咯构成的卟啉环,四个吡咯与金属镁元素结合。叶绿素存在于叶

科学家揭示叶绿体蛋白质量控制新机制

近日,中国科学院植物研究所研究员林荣呈等揭示了叶绿体蛋白质量控制的新机制,发现CDC48复合体可以通过泛素化蛋白酶体途径介导叶绿体内RbcL和AtpB蛋白的降解。相关研究成果发表于《细胞通讯》。 叶绿体是绿色植物和真核藻类特有的细胞器,是光合作用以及许多其他重要生物学过程发生的重要场所。叶

关于叶绿素的基本信息介绍

  叶绿素(Chlorophyl)是高等植物和其它所有能进行光合作用的生物体含有的一类绿色色素。叶绿素有多种,例如叶绿素a、b、c和d,以及细菌叶绿素和绿菌属叶绿素等,与食品有关的主要是高等植物中的叶绿素a和b两种。其结构共同特点是结构中包括四个吡咯构成的卟啉环,四个吡咯与金属镁元素结合。叶绿素吸收