Antpedia LOGO WIKI资讯

科学家编制出光合作用蛋白质目录

美国卡内基学院、加利福尼亚大学洛杉矶分校与美国能源部联合研究院利用先进的计算机工具,分析了28种植物中与光合作用相关的基因组,编制出与光合作用有关的597个编码基因蛋白的详细目录,从而可更好地从基因学角度研究支撑植物生理与生态的各种生物过程。研究论文发表在最新一期《生物化学杂志》上。 这597个来自植物和绿藻基因组的编码蛋白,称为GreenCut蛋白质,是光合生物特有的蛋白。其中286个是当前已知的功能蛋白,剩下的311个尚无法与特定的生物过程联系起来。 叶绿体是进行光合作用的工作间,有52%的GreenCut蛋白质位于叶绿体上。目前人们普遍认为,叶绿体是从一种能进行光合作用的单细胞细菌——藻青菌进化而来。大约15亿年前,藻青菌被更加复杂的、不能进行光合作用的细胞所吞噬,两种生物之间形成了最早的共生关系。在进化过程中,藻青菌将它的大部分基因信息转移给了宿主生物的细胞核,丧失了独立生存能力。 “这种基因减退的......阅读全文

叶绿体的形态与结构介绍

  在高等植物中叶绿体象双凸或平凸透镜,长径5~10um,短径2~4um,厚2~3um。高等植物的叶肉细胞一般含50~200个叶绿体,可占细胞质的40%,叶绿体的数目因物种细胞类型,生态环境,生理状态而有所不同。在藻类中叶绿体形状多样,有网状、带状、裂片状和星形等等,而且体积巨大,可达100um。 

叶绿体基因组

叶绿体是地球上绿色植物把光能转化为化学能的重要细胞器,叶绿体中进行的光合作用是严格地受到遗传控制的。早在20世纪初,人们就已知叶绿体的某些性状是呈非孟德尔式遗传的,但直到60年代才发现了叶绿体DNA(chloroplast DNA,ctDNA)。叶绿体基因组是一个裸露的环状双链DNA分子,其大小在1

叶绿体是什么

叶绿体是质体的一种, 是高等植物和一些藻类所特有的能量转换器。叶绿体是含有绿色色素(主要为叶绿素 a 、b)的质体,为绿色植物进行光合作用的场所,存在于高等植物叶肉、幼茎的一些细胞内,藻类细胞中也含有。叶绿体的形状、数目和大小随不同植物和不同细胞而异。

叶绿体DNA分离

设备:Hitachi CS-150GXL或CS-120GXL微量超速离心机,S100AT6 转头,5PA 密封管(如果用4PC管,可接比例减少各层液量)溶液配制:A液:0.35Msorbitol(山梨醇),50mM Tris—Hcl (PH8.0) 25mM EDTA—Na2B液:5%(w/w)So

叶绿体(chloroplast)分离

设备:Hitachi CF—7D2离心机,T5SS或T4SS或T7A转头50ml PP 离心管CP—MX ,CP—WX超速离心机,R28S转头,40ml PA管。(或其他品牌离心机,同类转头)溶液配置:A液:0.35M Sorbitol,(山梨醇),50mM Tris—HCL (PH8.0) 5mM

叶绿素与光合作用

  光合作用(Photosynthesis)是绿色植物利用叶绿素等光合色素和某些细菌(如带紫膜的嗜盐古菌)利用其细胞本身,在可见光的照射下,将二氧化碳和水(细菌为硫化氢和水)转化为储存着能量的有机物,并释放出氧气(细菌释放氢气)的生化过程。同时也有将光能转变为有机物中化学能的能量转化过程。植物之所以

湖北大学,河南大学发Cell:叶绿体蛋白运输与分选机制

  光合作用是地球上最大规模地利用太阳能,把二氧化碳和水合成为有机物,并放出氧气的过程。叶绿体是植物光合作用场所。叶绿体是由光合细菌共生演变而来的,在光合作用及其他多种重要生理过程中发挥着关键性的作用。叶绿体具有半自主性,95%叶绿体蛋白是由核基因编码的,胞质合成为前体后,通过叶绿体外被膜和内被膜上

大四时被“忽悠”进组,27岁小伙发首篇Nature论文

5年前的夏天,中科院生物物理所园区回荡着悠长的蝉鸣。刘昊走进柳振峰研究员的办公室,当时他22岁,正在读大四,想要到柳老师的实验室里实习。柳振峰在电脑上打开一张PPT,这是植物光合作用的分子机制图。在植物细胞中,叶绿体像一个个迷你“生产车间”正在繁忙工作。然而这些“生产车间”自己内部培养的“工人”——

大四被“忽悠”进组,27岁小伙发首篇顶刊论文

原文地址:http://news.sciencenet.cn/htmlnews/2023/3/497259.shtm 5年前的夏天,中科院生物物理所园区回荡着悠长的蝉鸣。刘昊走进柳振峰研究员的办公室,当时他22岁,正在读大四,想要到柳老师的实验室里实习。 柳振峰在电脑上打开一张PPT,这是植

大四时被“忽悠”进组,27岁小伙发首篇Nature论文

  5年前的夏天,中科院生物物理所园区回荡着悠长的蝉鸣。刘昊走进柳振峰研究员的办公室,当时他22岁,正在读大四,想要到柳老师的实验室里实习。  柳振峰在电脑上打开一张PPT,这是植物光合作用的分子机制图。在植物细胞中,叶绿体像一个个迷你“生产车间”正在繁忙工作。然而这些“生产车间”自己内部培养的“工

解密番茄果实中叶绿素合成和叶绿体发育的分子机制

  在植物中,叶绿体是发生光合作用的场所,叶绿体丰度的增加会提高植物的营养质量和果实的颜色。然而,番茄果实中叶绿素合成和叶绿体发育的分子机制仍然未知。      6月1日华中农业大学张余洋/叶志彪研究团队在Horticulture Research 发表了一篇名为“SlRCM1, whichenco

叶绿体和光合色素

一、叶绿体 叶片是光合作用的主要器官,而叶绿体(chloroplast,chlor)是光合作用最重要的细胞器。(一)叶绿体的发育、形态及分布1.发育 高等植物的叶绿体由前质体(proplastid)发育而来,前质体是近乎无色的质体,它存在于茎端分生组织中。当茎端分生组织形成叶原基时,前质体的双层膜中

Nature:柳振峰团队发现叶绿体蛋白质传送器的组装原理

  叶绿体是植物和藻类细胞中可以通过光合作用将光能转化为化学能的细胞器。作为一种由两层膜包被的特殊细胞器,叶绿体含有其自身的基因组,其表达是与核基因组的表达紧密协调的。  叶绿体的蛋白质有两种来源,有一小部分(50-200个)是由叶绿体基因组编码,而大多数的其它叶绿体蛋白质(2000-3000个)则

关于原生质体的细胞器的介绍

  是指细胞质内有一定形状和位置的颗粒状或区域功能单位,可由膜包围或延展形成,也可能是由蛋白质聚集而成。如质体(plastid)、液泡、线粒体、内质网、高尔基体、溶酶体、微管、微丝等。其中质体、液泡与细胞壁是植物细胞区别于动物细胞的三大特有细胞结构。  (1)质体:由双层膜构成的规则或不规则形状的颗

氮气浓缩仪是光反应的阶段的链接仪器

叶绿体是植物细胞内重要、普遍的质体,它是进行光合作用的细胞器。叶绿体利用其叶绿素将光能转变为化学能,把CO2与水转变为糖。叶绿体是世界上成本低、创造物质财富多的生物工厂 光反应又称为光系统电子传递反应(photosythenic electron-transfer reaction)。在反应过程

柳振峰课题组等发现叶绿体蛋白质传送器的组装原理

  叶绿体是植物和藻类细胞中可以通过光合作用将光能转化为化学能的细胞器。作为一种由两层膜包被的特殊细胞器,叶绿体含有自身的基因组,且其表达是与核基因组的表达紧密协调的。叶绿体的蛋白质有两种来源,有一小部分(50-200个)由叶绿体基因组编码,而大多数的其他叶绿体蛋白质(2000-3000个)则由核基

叶绿体亚分级实验

叶绿体亚分级 实验材料 叶绿体                                                           试剂、试剂盒 裂解缓冲液                                              

叶绿体亚分级实验

            实验材料 叶绿体 试剂、试剂盒 裂解缓冲液

叶绿体基因的定义

叶绿体基因:cpDNA,环状,可自主复制,也受核基因控制。

叶绿体的功能简介

  光合作用是叶绿素吸收光能,使之转变为化学能,同时利用二氧化碳和水制造有机物并释放氧的过程。这一过程可用下列化学方程式表示:6CO2+6H2O( 光照、酶、 叶绿体)→C6H12O6(CH2O)+6O2。其中包括很多复杂的步骤,一般分为光反应和暗反应两大阶段。  光反应:这是叶绿素等色素分子吸收,

叶绿体亚分级实验

实验材料 叶绿体试剂、试剂盒 裂解缓冲液仪器、耗材 微量离心管小型离心机实验步骤 1. 将含 1 mg 叶绿素的叶绿体悬液吸至一微量离心管中。2. 在小型离心机中 14000 r/min 离心 30 秒钟,弃去上清。3. 加 1 ml 裂解缓冲液,振荡,冰浴 5 分钟。裂解缓冲液:10 mmol/L

叶绿体的相关介绍

  叶绿体(Chloroplast)是质体的一种,是高等植物和一些藻类所特有的能量转换器。其双层膜结构使其与胞质分开,内有片层膜,含叶绿素,故名为叶绿体。  叶绿体是含有绿色色素(主要为叶绿素 a 、b)的质体,为绿色植物进行光合作用的场所,存在于高等植物叶肉、幼茎的一些细胞内,藻类细胞中也含有。叶

机械法分离叶绿体

一、原理研磨叶片得到的匀浆,经过滤、离心可制备叶绿体。叶绿体的被膜比较脆弱,分离叶绿体应在等渗的缓冲溶液中,0~4℃温度下进行。叶绿体活力会随着离体时间延长而不断下降,因此,分离工作尽可能在短时间内完成。二、仪器与用具冰箱;离心机;扭力天平;显微镜;pH计;研钵;量筒;移液管;离心管;脱脂纱布等。分

叶绿素测定仪分析春玉米叶绿素含量与光合速率的关系

  叶绿素的含量对叶片生理活性变化有着十分重要的影响,是其重要指标之一,这与叶片的光合作用的能力有着十分紧密的关系,所以对叶绿素含量进行测定分析,可以作为提高作物产量的理论基础。对于夏玉米叶片的叶绿素组成及含量的相关规律已经有所研究,在此基础上对春玉米的叶绿素含量的变化进行系统的研究,借此数据提高植

中科院张立新研究组PNAS发表新成果

  植物通过光合作用利用光能将二氧化碳和水转化为有机物并释放出氧气。这一系列复杂的代谢反应组成,发生在叶绿体的类囊体膜上。类囊体膜上的叶绿体ATP合成酶负责催化光驱动的ATP合成,为光合作用中的碳固定提供能量。这种酶由不同来源的亚基组成,是细胞器发生和植物生存必不可少的多蛋白复合体,  中科院植物研

辅助分子伴侣Cpn11/20/23调控叶绿体ClpP蛋白酶复合体

  中国科学院分子细胞科学卓越创新中心(生物化学与细胞生物学研究所)丛尧研究组与中科院遗传与发育研究所刘翠敏研究组合作,在Nature Plants上,在线发表了研究论文The cryo-EM structure of the chloroplast ClpP complex。该研究首次解析了莱茵衣

M-PEA和氧电极应用

氧苯酮是多数防晒霜中的一种主要的防紫外线的有效成分。也被广地泛添加在许多个人护理产品中。最近有学者报道,它可以造成珊瑚的白化,导致动物的激素分泌、胚胎发育及生殖受精等过程的异常。因此,最近美国夏威夷州和不少沿海岛国通过相关的法律,禁止使用含有氧苯酮的防晒霜。      迄今为止,关于氧苯酮研究主要集

光反应的过程步骤

光反应又称为光系统电子传递反应(photosythenic electron-transfer reaction)。在反应过程中,来自于太阳的光能使绿色生物的叶绿素产生高能电子从而将光能转变成电能。然后电子通过在叶绿体类囊体膜中的电子传递链间的移动传递,并将H+质子从叶绿体基质传递到类囊体腔,建立电

光合作用:撑起绿色能源一片天

氧化碳排放、油价飙升、能源危机已成为当前热门的话题。 实际上,地球上的能量巨大。太阳每秒钟到达地面的能量达80万千瓦,如果将太阳光照射地球表面1个小时产生的所有能量聚积起来,就足以满足人类整整一年的能源需求。 而光合作用是地球上最为有效的固定太阳光能的过程,如果人类可以像植物一样利用光合作用,直

利用tps-2测植物叶片光和速率

(1)P点时光照强度为0,此时只进行呼吸作用,影响呼吸作用的主要因素为温度,温度能够影响酶的活性.(2)据乙图可知,当光照强度为0千勒克斯时,只进行呼吸作用,当光照强度为2千勒克斯时,光合速率等于呼吸速率,此过程中容器内的CO2量增加,氧气量减少,而CO2又可以被CO2缓冲液吸收,因此容器内气体总量