X荧光光谱仪主要使用领域
X荧光光谱仪原理仪器是较新型X射线荧光光谱仪,具有重现性好,测量速度快,灵敏度高的特点。能分析F(9)~U(92)之间所有元素。样品可以是固体、粉末、熔融片,液体等,分析对象适用于炼钢、有色金属、水泥、陶瓷、石油、玻璃等行业样品。无标半定量方法可以对各种形状样品定性分析,并能给出半定量结果,结果准确度对某些样品可以接近定量水平,分析时间短。薄膜分析软件FP-MULT1能作镀层分析,薄膜分析。 测量样品的最大尺寸要求为直径51mm,高40mm. 仪器类别: 0303040903 /仪器仪表 /成份分析仪器 /荧光光度计 指标信息: 1.发射源是Rh靶X光管,最大电流125mA,电压60kV,最大功率3kW2.仪器在真空条件下工作,真空度<13pascals 3.5块分......阅读全文
X射线荧光光谱仪的原理
X射线荧光的物理原理:当材料暴露在短波长X光检查,或伽马射线,其组成原子可能发生电离,如果原子是暴露于辐射与能源大于它的电离势,足以驱逐内层轨道的电子,然而这使原子的电子结构不稳定,在外轨道的电子会“回补”进入低轨道,以填补遗留下来的洞。在“回补”的过程会释出多余的能源,光子能量是相等两个轨道的能量
X荧光光谱仪分析技术误区
不管任何分析仪器,分析技术是获得正确结果的保证。分析技术贯穿于仪器应用的全过程。分析方法的选择必须满足仪器应用的需要。 误区1:标样制备太麻烦,最好用无标样法。 X荧光光谱仪分析法和其它大部分分析仪器一样,是相对分析法。在X荧光光谱仪分析中,测得的X射线强度与相应元素浓度的对应关系完全是建立在标准样
X荧光光谱仪分类及优势
X荧光光谱仪(XRF)是由激发源(X射线管)和探测系统构成。其工作原理是:X射线管通过产生入射X射线(一次X射线),来激发被测样品。受激发的样品中的每一种元素会放射出二次X射线,并且不同的元素所放射出的二次X射线具有特定的能量特性或波长特性。探测系统测量这些放射出来的二次X射线的能量及数量。然后
X射线荧光光谱仪的原理
X射线荧光光谱仪具有重现性好,测量速度快,灵敏度高的特点。能分析B(5)~U(92)之间所有元素。样品可以是固体、粉末、熔融片,液体等,分析对象适用于炼钢、有色金属、水泥、陶瓷、石油、玻璃等行业样品。无标半定量方法可以对各种形状样品定性分析,并能给出半定量结果,结果准确度对某些样品可以接近定量水
x射线荧光光谱仪安全事项
在分析过程中,给管通电后,分析仪会发射定向辐射束。应尽合理的努力使放射线的暴露量保持在实际可行的剂量限度以下。这就是所谓的ALARA(最低合理可行)原则。三个因素将有助于最大程度地减少您的辐射暴露:时间,距离和屏蔽。 尽管便携式x射线荧光光谱仪或手持式x射线荧光光谱仪元素分析仪发出的辐射与普通
X荧光光谱仪的分类介绍
X荧光光谱仪可分为能量色散(EDXRF)和波长色散(WDXRF)两大类,随后将详细介绍。可分析的元素及检测限主要取决于所用的光谱仪系统。EDXRF分析的元素从Na到U;WDXRF分析的元素从Be到U。浓度范围从ppm到100%。通常重元素的检测限优于轻元素。
简述X荧光光谱仪技术原理
X荧光光谱仪(XRF)由激发源(X射线管)和探测系统构成。X射线管产生入射X射线(一次X射线),激发被测样品。受激发的样品中的每一种元素会放射出二次X射线,并且不同的元素所放射出的二次X射线具有特定的能量特性或波长特性。探测系统测量这些放射出来的二次X射线的能量及数量。然后,仪器软件将探测系统所
如何选择X荧光光谱仪(XRF)
应选择历史悠久,技术过硬,故障率低,日常运行成本低,使用年限长,性价比高,品牌过硬的仪器。Niton公司成立超过20年,其便携式光谱仪在世界上处于ling先地位,在世界各地已安装超过12000台,可快捷测试元素周期表中从22号元素钛(Ti)至83号元素铋(Bi)中的23个标准合金成分元素,辅助氦
X射线荧光光谱仪的原理
X射线荧光的物理原理:当材料暴露在短波长X光检查,或伽马射线,其组成原子可能发生电离,如果原子是暴露于辐射与能源大于它的电离势,足以驱逐内层轨道的电子,然而这使原子的电子结构不稳定,在外轨道的电子会“回补”进入低轨道,以填补遗留下来的洞。在“回补”的过程会释出多余的能源,光子能量是相等两个轨道的能量
X荧光光谱仪的优缺点
a) 分析速度快。测定用时与测定精密度有关,但一般都很短,10~300秒就可以测完样品中的全部待测元素。b) X射线荧光光谱跟样品的化学结合状态无关,而且跟固体、粉末、液体及晶质、非晶质等物质的状态也基本上没有关系。(气体密封在容器内也可分析)但是在高分辨率的精密测定中却可看到有波长变化等现象。特别
X射线荧光光谱仪-检测标准
JJG810-1993《波长色散X射线荧光光谱仪》检定周期为1年。
波长色散X射线荧光光谱仪
我国学者对不同时期WDXRF的进展曾予以评述。WDXRF谱仪从仪器光路结构来看,依然是建立在布拉格定律基础之上,但仪器面目全新。纵观30年来的发展轨迹,可总结出如下特点 。(1) 现代控制技术的应用使仪器精度大幅度提升。WDXRF谱仪在制造过程中,从20世纪80年代起,一些机械部件为电子线路所取代,
X荧光光谱仪的技术原理
X荧光光谱仪(XRF)由激发源(X射线管)和探测系统构成。X射线管产生入射X射线(一次X射线),激发被测样品,产生X荧光(二次X射线),探测器对X荧光进行检测。 X荧光光谱仪的技术原理: 元素的原子受到高能辐射激发而引起内层电子的跃迁,同时发射出具有一定特殊性波长的X射线,根据莫斯莱定律,荧光X
X射线荧光光谱仪工作原理
2.1 X射线荧光的物理原理 X射线是电磁波谱中的某特定波长范围内的电磁波,其特性通常用能量(单位:千电子伏特,keV)和波长(单位nm)描述。 X射线荧光是原子内产生变化所致的现象。一个稳定的原子结构由原子核及核外电子组成。其核外电子都以各自特有的能量在各自的固定轨道上运行,内层电子(如K层)在足
X荧光光谱仪制样方法详谈
一、固体样品1、固体样品的主要缺点是,一般情况下不能采用各种添加法:如标准添加(或稀释)法、低(或高)吸收稀释法、内标法等。若所有样品中已经含有适当的、一定浓度的内标元素,则上述的最后两种方法还是可用的。另外,也不能进行化学浓缩和分离。表面结构和成分有时也难取得一致。可能弄不到现成的标样,而人工合成
X荧光光谱仪的优缺点
优点:a) 分析速度快。测定用时与测定精密度有关,但一般都很短,10~300秒就可以测完样品中的全部待测元素。b) X射线荧光光谱跟样品的化学结合状态无关,而且跟固体、粉末、液体及晶质、非晶质等物质的状态也基本上没有关系。(气体密封在容器内也可分析)但是在高分辨率的精密测定中却可看到有波长变化等现象
X荧光光谱仪的发展历史
在中国,很多厂家更加喜欢购买进口的仪器,这不仅仅是因为国民对进口的认同和对国产不信任,还因为X荧光光谱技术的发展历史,下面让我们一起来追溯X荧光光谱技术的发展。X荧光光谱技术的发展1959年我国从苏联引入了照相式X荧光光谱仪,这是中国第一次引进X荧光光谱分析仪。 1895年,德国物理学家
x荧光光谱仪的分析对象
x荧光光谱仪的分析对象主要有各种磁性材料、钛镍记忆合金、混合稀土分量、贵金属饰品和合金等,x荧光光谱仪还可以对各种形态样品的无标半定量分析,对于均匀的颗粒度较小的粉末或合金,x荧光光谱仪检测的结果接近于定量分析的准确度。X荧光光谱仪分析快速,某些样品当天就可以得到分析结果。x荧光光谱仪适合用于课题研
X荧光光谱仪制样方法(一)
一、X荧光光谱仪分析方法是一个相对分析方法,任何制样过程和步骤必须有非常好的重复操作可能性,所以用于制作标准曲线的标准样品和分析样品必须经过同样的制样处理过程。X 射线荧光实际上又是一个表面分析方法,激发只发生在试样的浅表面,必须注意分析面相对于整个样品是否有代表性。此外,样品的平均粒度和粒度分布是
X荧光光谱仪的工作原理
当能量高于原子内层电子结合能的高能X射线与原子发生碰撞时,驱逐一个内层电子而出现一个空穴,使整个原子体系处于不稳定的激发态,激发态原子寿命约为 (10)-12-(10)-14s,然后自发地由能量高的状态跃迁到能量低的状态. 这个过程称为驰过程.驰豫过程既可以是非辐射跃迁,也可以是辐射跃迁.当较外层的
什么是X射线荧光光谱仪
X射线是一种电磁辐射,其波长介于紫外线和γ射线之间。它的波长没有一个严格的界限,一般来说是指波长为0.001-50nm的电磁辐射。对分析化学家来说,感兴趣的波段是0.01-24nm,0.01nm左右是超铀元素的K系谱线,24nm则是轻元素Li的K系谱线。1923年赫维西(Hevesy,G.Von)提
简述X荧光光谱仪的用途
X荧光光谱仪根据各元素的特征X射线的强度,可以 测定元素含量。 近年来,X荧光光谱分析在各行业应用范围不断拓展,已成为一种广泛应用于冶金、地质、有色、建材、商检、环保、卫生等各个领域,特别是在RoHS检测领域应用得最多也最广泛。 大多数分析元素均可用其进行分析,可分析固体、粉末、熔珠、液体等
x射线荧光光谱仪安全事项
在分析过程中,给管通电后,分析仪会发射定向辐射束。应尽合理的努力使放射线的暴露量保持在实际可行的剂量限度以下。这就是所谓的ALARA(最低合理可行)原则。三个因素将有助于最大程度地减少您的辐射暴露:时间,距离和屏蔽。 尽管便携式x射线荧光光谱仪或手持式x射线荧光光谱仪元素分析仪发出的辐射与普通
X荧光光谱仪的优缺点
X荧光光谱仪主要由激发源(X射线管)和探测系统构成,适用于工厂来料及制程控制中的有害物质检测,铅(Pb)、汞(Hg)、镉(Cr)、铬(Cd)、溴(Br)、氯(Cl)控制的利器。无损检测,可对电子电气设备,玩具指令中的有害物质进行定性定量分析。 X荧光光谱仪的优缺点介绍: 优点a) 分析速度快。测定
X荧光光谱仪重要技术原理
X荧光光谱仪技术原理: X荧光光谱仪(XRF)由激发源(X射线管)和探测系统构成。X射线管产生入射X射线(一次X射线),激发被测样品。受激发的样品中的每一种元素会放射出二次X射线,并且不同的元素所放射出的二次X射线具有特定的能量特性或波长特性。探测系统测量这些放射出来的二次X射线的能量及数量。然后
X荧光光谱仪的工作原理
当能量高于原子内层电子结合能的高能X射线与原子发生碰撞时,驱逐一个内层电子而出现一个空穴,使整个原子体系处于不稳定的激发态,激发态原子寿命约为 (10)-12-(10)-14s,然后自发地由能量高的状态跃迁到能量低的状态.这个过程称为驰过程.驰豫过程既可以是非辐射跃迁,也可以是辐射跃迁.当较外层的电
X射线荧光光谱仪制样要求
X射线荧光光谱仪制样要求: 样品的尺寸(直径x高)50x 40mm,重量400g。 1、定量分析 定量分析是对样品中元素进行准确定量测定。定量分析需要一组标准样品做参考。常规定量分析一般需要5个以上的标准样品才能建立较可靠的工作曲线。 常规X射线荧光光谱定量分析对标准样品的基本要求:
手持X荧光光谱仪鉴别陨石
方案优势 由于陨石的特殊性,需要采用无损分析方法进行分析,而且很多样品往往在野外,需要在现场进行实时分析。牛津仪器X-MET7500手持式X 射线荧光光谱仪无需复杂的样品前处理,可以满足陨石样品的现场实时在线分析需求:无论是陨石的真假鉴定还是野外对陨石进行现场分析。
X荧光光谱仪分类及比较
一、X-射线荧光光谱仪(XRF) 简介 X-射线荧光光谱仪(XRF)是一种较新型可以对多元素进行快速同时测定的仪器。在X射线激发下,被测元素原子的内层电子发生能级跃迁而发出次级X射线(即X-荧光)。波长和能量是从不同的角度来观察描述X射线所采用的两个物理量。 波长色散型X射线荧光光谱仪(
X荧光光谱仪的原理介绍
X荧光光谱仪是根据X射线荧光光谱分析方法配置的多通道X射线荧光光谱仪,能够分析固体或粉状样品中各种元素的成分含量,具有灵敏度高、精密度好、性能稳定、分析速度快等特点。 X荧光光谱仪的原理: X射线管通过产生入射X射线(一次X射线),来激发被测样品。 受激发的样品中的每一种元素会放射出二次X射线(又叫