同成分熔融化合物硼酸铋锌非线性光学材料研究通过验收

9月22日,乌鲁木齐市科技局组织有关专家对中科院新疆理化技术研究所承担的项目“同成分熔融化合物硼酸铋锌非线性光学材料的研究”进行了现场验收。 该项目旨在通过研究非线性光学晶体材料结构与性能的关系,以设计具有合理分子结构、性能优良的新型硼酸盐非线性光学晶体材料。研究人员将易于发生姜-泰勒畸变而与氧形成不对称的Bi3+配位多面体引入硼酸盐体系,设计并合成出了性能优异的新型非线性光学晶体Bi2ZnOB2O6。获得了晶体尺寸为35 mm x 25 mm x 12 mm的高光学质量单晶。利用X射线定向仪确定了BBB晶体的晶面,并根据晶面方向进行了精确切割、抛光,确定了该晶体加工工艺条件,获得了可用于性能测试的透明晶片。 项目实施过程中,共发表高水平论文18篇,其中SCI影响因子9.0以上1篇,4.0以上的有10篇。申请发明ZL14项,培养硕士研究生3名,博士研究生3名。 验收专家组听取了项目负责人的......阅读全文

同成分熔融化合物硼酸铋锌非线性光学材料研究通过验收

  9月22日,乌鲁木齐市科技局组织有关专家对中科院新疆理化技术研究所承担的项目“同成分熔融化合物硼酸铋锌非线性光学材料的研究”进行了现场验收。   该项目旨在通过研究非线性光学晶体材料结构与性能的关系,以设计具有合理分子结构、性能优良的新型硼酸盐非线性光学晶体材料。研究人员将易于发

新疆理化所非线性光学材料卤素硼酸盐研究获进展

  目前,制约紫外激光发展和应用的关键问题在于材料,特别是作为增益介质的紫外/深紫外非线性光学晶体材料,这也是国际光电子材料领域备受关注的一个研究热点。对于紫外波段倍频晶体,由于该波段的激光频率较高,波长较短。为解决此问题,目前国内外一般采用碱金属和碱土金属硼酸盐和卤素硼酸盐作为研究对象。   中

锌硼酸盐紫外非线性光学晶体研究获进展

  紫外(200 nm<λ<400 nm)非线性光学晶体是全固态激光器输出紫外激光的关键元件,近几十年被国内外科研机构广泛研究。目前,266 nm(Nd: YAG四倍频)紫外激光输出主要由β-BaB2O4(β-BBO)和CsLiB6O10(CLBO)两种晶体实现。然而,β-BBO晶体过大的双折射率及

新疆理化所合成复合金属卤素硼酸盐非线性光学材料

  紫外非线性光学材料是固态激光器产生紫外相干光的关键材料,为了获得具有非线性光学性质的非线性光学材料,目前国际上常用的方法是在结构中引入易使其产生畸变的非线性光学功能基元,这些基元主要有含有d0,d10电子结构的过渡金属阳离子多面体或含孤电子对的金属阳离子多面体。然而,这些结构基元常常使材料的紫外

“蓝绿激光器用钡铋硼酸盐晶体的研究”项目通过验收

  3月1日,由中科院新疆理化技术研究所光电功能材料团队承担的自治区高技术研究与发展项目“蓝绿激光器用钡铋硼酸盐晶体的研究”通过专家组验收。   该项目充分利用新疆丰富的钡、铋和硼矿资源,采用高温固相法合成出了硼酸钡铋(BBB)化合物纯相粉末,并通过大量实验找到了适合钡铋硼酸盐晶体生

新疆理化所锌硼酸铯紫外非线性晶体材料研究取得进展

  紫外非线性光学晶体材料是重要的光电信息功能材料,在信息、能源、工业制造、医学、科研等领域具有广泛的应用前景。多年来设计、合成性能优异的新型紫外非线性光学晶体材料一直是新型功能材料领域的研究热点。   铍硼酸盐被广泛看作紫外/深紫外非线性光学材料的理想选择,近年来,许多性能优异的铍硼酸盐非线性光

什么是非线性光学材料?

非线性光学材料就是那些光学性质依赖于入射光强度的材料,非线性光学性质也被称为强光作用下的光学性质,主要因为这些性质只有在微光这样的强想干光作用下才表现出来。

非线性光学材料的主要应用

广泛应用于激光频率转换、四波混频、光束转向、图象放大、光信息处理、光存储、光纤通讯、水下通讯、激光对抗及核聚变等研究领域。

新疆理化所锌硼酸盐紫外非线性光学晶体研究获进展

  紫外(200 nm<λ<400 nm)非线性光学晶体是全固态激光器输出紫外激光的关键元件,近几十年被国内外科研机构广泛研究。目前,266 nm(Nd: YAG四倍频)紫外激光输出主要由β-BaB2O4(β-BBO)和CsLiB6O10(CLBO)两种晶体实现。然而,β-BBO晶体过大的双折射率及

一系列具有优异性能的氟硼酸盐深紫外非线性光学材料

  基于第一性原理计算的结构最优搜寻为探索新型材料提供了有效手段。为缩短材料制备的研发周期,中国科学院新疆理化技术研究所新型光电功能晶体实验室研发团队建立了从材料软件研发、材料基因筛选及预测、材料设计、第一性原理计算和结构预测到设计制备的材料集成研究系统。  研究所新型光电功能材料研发团队开展无机深

长波红外非线性光学材料研究获进展

红外非线性光学晶体作为激光频率转换的关键器件,在全固态激光器中具有重要的应用。当前商用的红外非线性光学晶体主要包括黄铜矿型化合物如AgGaS2, AgGaSe2和ZnGeP2 等。然而,由于各自本征的性能缺陷,这些材料已不能完全满足当前长波红外激光技术发展的需求,亟需突破现有材料性能的限制,发展高性

新疆理化所红外非线性光学材料研究取得进展

  红外非线性光学材料作为重要的变频晶体,在国防、通讯、医疗以及安全方面有着重要的应用。不同于紫外非线性光学晶体的应用波段(短波长方面),红外非线性光学材料则在中远红外领域(包括3-5和8-12 μm)有着重要的应用。  长期以来,中国科学院新疆理化技术研究所光电功能材料团队主要针对短波长非线性光学

新疆理化所红外非线性光学材料研究获进展

  红外非线性光学晶体作为激光频率转换的关键器件,在全固态激光器中具有广泛的应用。当前商用的中远红外非线性光学晶体主要包括类金刚石结构的AgGaS2,AgGaSe2和ZnGeP2等化合物。然而,由于各自本征的性能缺陷,这些材料已不能完全满足当前红外激光技术发展的需求。因此,亟需开发性能优异的新型中远

福建物构所紫外非线性光学材料研究取得新进展

  激光光源的波长拓展很大程度上取决于频率转换器件材料非线性光学晶体的变频能力。随着激光在紫外和深紫外波段应用的日益重要,如何设计合成性能更优的硼酸盐非线性光学材料以及硼酸盐以外的紫外和深紫外非线性光学材料是当前研究的重点和热点。  紫外倍频材料目前以硼酸盐为主,特别是具有BO3三角形基团的硼酸盐具

新型硼酸盐非线性光学晶体材料的研究获科技进步一等奖

  2月26日,新疆维吾尔自治区科学技术奖励大会在乌鲁木齐召开,2010年度新疆维吾尔自治区科技进步奖突出贡献奖获得者和获奖科技成果受到表彰。由中国科学院新疆理化技术研究所电子信息材料与器件自治区重点实验潘世烈研究员主持完成的“新型硼酸盐非线性光学晶体材料的研究”项目荣获2010年度自

碳酸盐紫外非线性光学晶体材料研究获新进展

  激光光源的波长拓展很大程度上依赖于频率转换器件材料—非线性光学晶体的变频能力。随着激光在紫外和深紫外波段应用的日益重要,如何设计合成性能更优的硼酸盐非线性光学材料以及硼酸盐以外的紫外和深紫外非线性光学材料是当前研究的重点和热点。   在国家自然科学基金和中科院重要方向项目的资助下,中科院福建物

理化所发展出中红外非线性光学材料筛选新策略

  中红外非线性光学晶体能够通过频率转换产生中红外可调谐激光,在环保、医疗等方面应用广泛。目前,主要的商用红外非线性光学晶体有硫镓银、硒镓银和磷锗锌等,但存在激光损伤阈值较低的缺陷,难以满足更丰富的实际需求。因此,亟需探索抗激光损伤性能更优异的中红外非线性光学材料。由于热损伤是激光损伤的重要组成部分

新疆理化所在红外非线性光学材料研究方面取得进展

  红外非线性光学晶体作为激光频率转换的关键器件,在全固态激光器中具有广泛的应用。当前商用的中远红外非线性光学晶体主要包括类金刚石结构的AgGaS2(AGS)、AgGaSe2和ZnGeP2等化合物。然而,由于各自本征的性能缺陷,这些材料已不能完全满足当前红外激光技术发展的需求。因此,亟需开发性能优异

新疆理化所在红外非线性光学材料研究方面取得进展

  红外非线性光学晶体作为激光频率转换的关键器件,在全固态激光器中具有广泛的应用。当前商用的中远红外非线性光学晶体主要包括类金刚石结构的AgGaS2(AGS)、AgGaSe2和ZnGeP2等化合物。然而,由于各自本征的性能缺陷,这些材料已不能完全满足当前红外激光技术发展的需求。因此,亟需开发性能优异

新疆理化所获得氟磷酸盐非线性光学材料

  探索功能基团是进行功能导向性材料研发的关键所在。中国科学院新疆理化技术研究所新型光电功能材料研发团队一直致力于非线性光学材料设计制备。为缩短材料制备的研发周期,研发团队建立了材料软件研发、材料基因筛选及预测、材料设计、第一性原理计算和结构预测到设计制备的材料集成研究方案。  近期,针对紫外/深紫

理化所发展出中红外非线性光学材料筛选新策略

中红外非线性光学晶体能够通过频率转换产生中红外可调谐激光,在环保、医疗等方面应用广泛。目前,主要的商用红外非线性光学晶体有硫镓银、硒镓银和磷锗锌等,但存在激光损伤阈值较低的缺陷,难以满足更丰富的实际需求。因此,亟需探索抗激光损伤性能更优异的中红外非线性光学材料。由于热损伤是激光损伤的重要组成部分,具

理化所发展出中红外非线性光学材料筛选新策略

中红外非线性光学晶体能够通过频率转换产生中红外可调谐激光,在环保、医疗等方面应用广泛。目前,主要的商用红外非线性光学晶体有硫镓银、硒镓银和磷锗锌等,但存在激光损伤阈值较低的缺陷,难以满足更丰富的实际需求。因此,亟需探索抗激光损伤性能更优异的中红外非线性光学材料。由于热损伤是激光损伤的重要组成部分,具

福建物构所磷属红外非线性光学晶体研究获进展

  红外非线性光学晶体能够通过频率转换作用,产生中红外可调谐激光。目前,红外非线性光学晶体的应用主要有硫镓银、硒镓银和磷锗锌,但是由于其存在的缺陷,已不能满足运用需要。因此,急需探索性能更优异的中红外非线性光学材料。磷属化合物非线性光学材料通常展现出较大倍频系数及较高热导率,因此,磷属化合物是合适的

福建物构所深紫外非线性光学晶体材料研究获进展

  深紫外激光具有波长短、光子能量高等优点,因而在高分辨率成像、光谱应用、微细加工等诸多领域具有重要的应用价值,利用深紫外非线性光学晶体进行变频是获得深紫外激光的主要手段。优良的深紫外非线性光学晶体既要具有大的非线性光学效应,又要具有短的紫外吸收边,而这两种性能在某种程度上是相互冲突的,这就需要在两

福建物构所深紫外非线性光学晶体材料研究获进展

  深紫外激光具有波长短、光子能量高等优点,因而在高分辨率成像、光谱应用、微细加工等诸多领域具有重要的应用价值,利用深紫外非线性光学晶体进行变频是获得深紫外激光的主要手段。优良的深紫外非线性光学晶体既要具有大的非线性光学效应,又要具有短的紫外吸收边,而这两种性能在某种程度上是相互冲突的,这就需要在两

研究提出共价键合氟优化硼氧框架新策略

近期,中国科学院新疆理化技术研究所研究员潘世烈和杨志华团队在氟化硼酸盐的深紫外非线性光学性能研究方面取得进展。该团队提出了通过共价键合氟优化硼氧框架的新策略,为设计新型光学材料提供了理论依据。相关研究成果发表在《科学通报》(Science Bulletin)上。氟化硼酸盐具有丰富的结构多样性和组装模

我国学者在非线性光学材料研究取得新进展

  非线性光学(NLO)晶体材料在现代激光科学与技术中占有重要地位。长期以来,科学家们一直在追求获得具有更大倍频效应的NLO材料。然而,大的倍频效应常常是和深紫外透过能力是相冲突的。这使得获得倍频效应增强的深紫外NLO材料尤为困难,特别是考虑到深紫外区逼近NLO材料光学透过能力的理论极限。  中科院

新疆理化所在汞基红外非线性光学材料方面获进展

  红外非线性光学晶体作为激光频率转换的关键器件,在全固态激光器中应用广泛。当前,商用的中远红外非线性光学晶体主要包括类金刚石结构的AgGaS2、AgGaSe2和ZnGeP2等化合物。然而,由于各自本征的性能缺陷,这些材料已不能完全满足当前红外激光技术发展的需求。因此,亟需开发性能优异的新型中远红外

硼铍酸盐非线性晶体材料研究取得新发现

  获得大的非线性光学系数、合适的双折射率、以及优良的物理化学性能的深紫外非线性光学晶体具有很强的挑战性,碱金属硼酸盐由于其具有优异的深紫外透光性能而成为深紫外非线性光学晶体材料的研究热点。   在科技部863计划、国家自然科学基金、中科院重要方向项目的支持下,中科院福建物质结构研究

新疆理化所短波长非线性光学晶体的设计与合成取得进展

  非线性光学晶体材料是重要的光电信息功能材料,在信息、能源、工业制造、医学、科研等领域具有广泛的应用前景。随着激光精密机械加工业、激光化学、紫外激光光谱学和激光医学等学科的飞速发展,人们迫切需要发展全固态深紫外相干光源,其关键突破点在于紫外和深紫外波段的非线性光学晶体的研制和应用。多年来设计、合成