《科学》:英研究揭秘人脑对威胁反应机理
英国研究人员通过实验发现,人脑对威胁的反应主要由两个部位控制,二者失衡便可能导致一些不正常反应。 这项研究由伦敦大学学院韦尔科姆基金会神经影像中心科研人员迪恩·莫布斯及其同事们共同完成。他们利用一款带有恐怖色彩的电脑游戏惊吓实验志愿者,同时观察他们的大脑扫描图像。 莫布斯等人在8月23日出版的《科学》杂志上撰文说,他们发现,威胁较远时,大脑前额叶皮层的靠下部位比较活跃。这个区域与复杂决策有关,比如策划如何逃跑。随着威胁迫近,活跃区就会转移到大脑脉管周围的灰质区域。这一区域与快速反应求生机制有关,比如打斗或者逃跑。 “这有点像跷跷板,”莫布斯说,“两个区域都发挥作用,但在威胁存在的不同阶段,总有一个占主导地位。这可以讲得通,因为一些时候,对威胁保持警惕就足够了,而在另外一些时候,我们需要迅速作出反应。” 路透社报道说,了解这两个区域如何转换可能具有重要意义。前额叶皮层控制着大脑一些比较原始的......阅读全文
《科学》:英研究揭秘人脑对威胁反应机理
英国研究人员通过实验发现,人脑对威胁的反应主要由两个部位控制,二者失衡便可能导致一些不正常反应。 这项研究由伦敦大学学院韦尔科姆基金会神经影像中心科研人员迪恩·莫布斯及其同事们共同完成。他们利用一款带有恐怖色彩的电脑游戏惊吓实验志愿者,同时观察他们的大脑扫描图像。 莫布斯等人在8月23日出版的《科学
Science:中美科学家揭示大脑发育机制
上海交通大学系统生物医学研究院吴强教授与美国哥伦比亚大学教授、分子生物学先驱 Tom Maniatis 研究团队合作,发现原钙粘蛋白基因簇表达的一个特定异构体决定5-羟色胺神经环路的组装和轴突空间规则排列(axonal tiling and even spacing),这一研究成果于2017年4
《Science》!国仪量子EPR助力催化反应机理研究
近日,武汉大学雷爱文团队与中国科学院兰州化学物理研究所何林团队在非对称脲合成领域取得重大突破。该研究成果以“Synchronous recognition of amines in oxidative carbonylation toward unsymmetrical ureas”为题于11月
SCIENCE-:科学家研发新的大脑绘图工具
以高空间和时间分辨率记录大脑皮层活动对于理解生理和病理条件下的大脑回路至关重要。近日,美国加州大学圣地亚哥分校研究团队开发了一种基于铂纳米棒的新记录网格,这种新的大脑绘图工具能够以高分辨率、准确地记录人类大脑皮层活动。这项研究成果以“Human brain mapping with multit
Science:科学家首次公布大脑3D图谱
2012年年底《科学》(Science)杂志预测了2013年六大值得关注的科学领域,其中之一就是连接组(Connectome),这是在大科学项目清单中重点强调的一个项目,也就是找到人类大脑的“布线图”。为了了解这个神奇的大脑网络,此前美国国立卫生研究院已经推出了人类连接组项目(Human Con
Science:重磅!血管指导大脑发育
大脑的功能和内环境稳定(homeostasis)依赖于其复杂的细胞网络之间的通信。因此,大脑中不同细胞群体的发育需要在时间和空间上加以协调。在一项新的研究中,来自德国法兰克福大学、美因茨大学、马克斯-普朗克脑研究所和吉森大学的研究人员报道血管在协调大脑内的神经元细胞网络的正常发育中发挥的新功能。
Science:暴饮暴食的大脑作用机制
60年前,科学家们利用电刺激小鼠大脑区域,诱发这些无论饥饿与否的动物进食。近期来自北卡罗来纳大学医学院的研究人员破解了这一关键的分子机制,发现了诱发此种行为的精确细胞连接。这一研究成果公布在9月27日的Science杂志上,将有助于解析肥胖的病因,并由此提出针对厌食,神经性贪食,暴饮暴食的新治疗
Science:暴饮暴食的大脑作用机制
60年前,科学家们利用电刺激小鼠大脑区域,诱发这些无论饥饿与否的动物进食。近期来自北卡罗来纳大学医学院的研究人员破解了这一关键的分子机制,发现了诱发此种行为的精确细胞连接。这一研究成果公布在9月27日的Science杂志上,将有助于解析肥胖的病因,并由此提出针对厌食,神经性贪食,暴饮暴食的新治疗
Science:重磅!血管指导大脑发育
大脑的功能和内环境稳定(homeostasis)依赖于其复杂的细胞网络之间的通信。因此,大脑中不同细胞群体的发育需要在时间和空间上加以协调。在一项新的研究中,来自德国法兰克福大学、美因茨大学、马克斯-普朗克脑研究所和吉森大学的研究人员报道血管在协调大脑内的神经元细胞网络的正常发育中发挥的新功能。
卤仿反应的反应机理
卤仿反应在机理上可以分为三步。以碘为例 :1、羰基α-氢的连续卤化:R-CO-CH3+ 3 I2+ 3 OH-→ R-CO-CI3+ 3 I-+ 3 H2O2、氢氧根的进攻:R-CO-CI3+ OH-→RCOOH+ CI3-3、质子交换,卤仿最终形成:RCOOH + CI3-→ RCOO-+CHI3
概述消除反应的反应机理
在离子型反应中,按有关价键发生变化的先后顺序不同,可分三种反应机理。 1、E1消除 单分子消除反应(E1) 反应物先电离,离去基团断裂下来,同时生成一个碳正离子,然后失去 β氢原子并生成π 键。反应分两步进行,决定速率这一步(决速步)只有反应物分子参加。故E1的速率与反应物的浓度成正比,与碱
消除反应的反应机理分析
在离子型反应中,按有关价键发生变化的先后顺序不同,可分三种反应机理。E1消除单分子消除反应(E1) 反应物先电离,离去基团断裂下来,同时生成一个碳正离子,然后失去 β氢原子并生成π 键。反应分两步进行,决定速率这一步(决速步)只有反应物分子参加。故E1的速率与反应物的浓度成正比,与碱的浓度无关。E1
傅克反应的反应机理
在烷基化反应中,反应并不停止在一烷基化阶段,由于生成的烷基苯比苯易于烷基化,还可以生成多烷基取代的芳烃。以苯的乙基化为例,除乙苯外,还生成二乙苯和三乙苯等。如果加入过量的苯,则可以提高乙苯的产率,抑制多乙苯的生成,这是因为傅列德尔-克拉夫茨烷基化反应是可逆反应。傅列德尔克拉夫茨反应如果苯与过量的溴乙
Science:改善大脑功能的关键机制
近日,一组来自麦吉尔大学健康中心研究所的科学家们通过研究揭示了机体大脑的复杂功能,该研究发表于Science杂志上,研究者表示,名为星形细胞的脑细胞几乎在大脑功能的各个方面都扮演着重要的角色,而星形细胞可以被神经元所调节从而对损伤和疾病产生反应,该研究对于研究癫痫症、运动性障碍及神经变性疾病很有
Science:大脑信号调控工作记忆
一项新的研究发现,将特定类型的大脑模式持续更长时间可以改善大鼠的短期记忆。 该研究于6月14日发表Science。这项新的研究发现,当个体学习新的环境时,脑细胞(神经元)产生的信号会延长数十毫秒,并且比学习熟悉环境时捕获更多的信息。当研究小组人为地将大鼠通过迷宫的最佳路径的相关记忆中涉及的信号
加揭示大脑压力回路工作机理
加拿大研究人员发现,大脑中的压力回路在生命早期阶段就已开始深奥的学习进程,从而为大脑应对后续挑战进行准备和优化。研究成果为设计出更有效的预防和治疗策略,以减轻压力影响和应对公共卫生挑战打下了重要基础。相关论文发表在4月7日《自然·神经科学》网络版上。 通过使用光遗传学等大量前沿方法,卡尔加
Science:焦虑有救了-科学家发现调节负面情绪的大脑受体
情绪低落、意志低迷、负能量爆棚,整个人都丧丧的。当你浑身散发着“我很焦虑”的信号时,大脑的化学平衡就已经被打破了。近日,一个国际科学家团队找到了大脑调节负面情绪的受体。这一发现或将为精神病药物的研发带来新的希望。该研究发表在《Science》杂志上。 负面情绪调节中心 在人脑中央内侧缰核(M
美神经科学家揭开大脑记忆时间关联事件机理
美国麻省理工学院的神经科学家发现,大脑中的两个神经回路可控制时间关联事件记忆的形成,是大脑记忆机制研究方面的重大进展,该论文发表在近期出版的《科学》杂志上。 人类的大脑很难记住日常琐碎的、司空见惯的小事,但对于有意义的次序事件的记忆却会十分清晰。举例来说,如果你在听到尖锐的汽车刹
Science新闻:用蛆治病的机理
在我们的印象中,蛆(maggot)是令人感到毛骨悚然的、粘糊糊的一种动物。可这种粘糊的东西却是一种了不起的修复药膏,数个世纪以来战地外科医生用它来愈合伤口。现在研究人员找到了苍蝇幼虫发挥魔力的机理:它们抑制了我们的免疫系统。 蛆是坏死组织的高效率取食者。它们吃下腐烂的肉,几乎毫发不损留下健
缩合反应的反应式反应机理
缩合反应condensation (reaction)两个或多个有机分子相互作用后以共价键结合成一个大分子,同时失去水或其他比较简单的无机或有机分子的反应。在多官能团化合物的分子内部发生的类似反应则称为分子内缩合反应。缩合反应可以通过取代、加成、消除等反应途径来完成。多数缩合反应是在缩合剂的催化作用
脱敏的反应机理
Ⅰ型变态反应是由免疫球蛋白E(IgE)和肥大细胞介导的速发型变态反应 。变应原与肥大细胞上结合的IgE作用,使肥大细胞释放介质,引起临床反应。实验证明 ,进行脱敏治疗后,血清中IgE和免疫球蛋白G(IgG)的水平逐渐上升,到约4个月时,IgE水平开始下降,而IgG的水平则继续上升,到治疗结束时,其水
醛基反应机理
羟胺作为亲核试剂与醛上的羰基发生亲核加成.首先带孤对电子的氮原子进攻羰基碳,而羰基碳上的电子向氧迁移使氧呈负电性,原羟胺上的H转移到羰基氧上形成羟基,而后发生消去反应,碳脱羟基,氮脱氢,得到-CH=NOH.反应机理的图谱我这没有软件没办法画出来,如果你有条件可以查阅高等教育出版社出版的《基础有机化学
质子转移反应的反应机理
质子转到受体的反应,称为质子转移反应。反应是质子给体A和受体B间有质子转移的反应。如HA+B-→HB+A-,故也称酸碱反应。其反应机理有两类:(1)质子直接转移,大致有三步。酸碱碰撞络合物的形成,质子通过水合结构与碱结合,水合结构的破裂。(2)有氢氧根离子参与的反应,这类反应的特点是快速,属扩散控制
单分子消除反应的反应机理
第一步是底物分子的离去基团离去,生成中间体碳正离子,这一步较慢;第二步是溶剂分子夺取碳正离子β-氢,生成烯烃。由于反应的速率控制步骤只与一个底物分子有关,是单分子过程,在反应动力学上是一级反应。 例子:单分子消除反应
克莱森缩合反应的反应机理
克莱森缩合反应的核心步骤是一个亲核取代反应1.一分子羧酸酯在强碱的进攻下失去酰基的一个α-氢原子,这是一个E2消除反应,并得到碳负离子A2.A对另一分子羧酸酯的羰基进行亲核进攻,得到中间体B,B随后脱去醇负离子而得到产物β-羰基羧酸酯3.产物的α-氢与两个羰基邻近,因而有较强的酸性,会与反应物中的强
质子转移反应的反应机理
质子转到受体的反应,称为质子转移反应。反应是质子给体A和受体B间有质子转移的反应。如HA+B-→HB+A-,故也称酸碱反应。其反应机理有两类:(1)质子直接转移,大致有三步。酸碱碰撞络合物的形成,质子通过水合结构与碱结合,水合结构的破裂。(2)有氢氧根离子参与的反应,这类反应的特点是快速,属扩散控制
关于卤仿反应的反应机理介绍
卤仿反应在机理上可以分为三步。以碘为例: 1、羰基α-氢的连续卤化: R-CO-CH3+ 3 I2+ 3 OH-→ R-CO-CI3+ 3 I-+ 3 H2O 2、氢氧根的进攻: R-CO-CI3+ OH-→RCOOH+ CI3- 3、质子交换,卤仿最终形成: RCOOH + CI3
双分子消除反应的反应机理
以卤代烷烃为例卤代烷在发生E2反应时,碱首先进攻β-氢,并逐渐与之结合,β-碳原子与氢原子之间的共价键部分断裂;与此同时,中心碳原子与卤素之间的共价键也部分断裂,卤素X带着一对电子逐渐离开中心碳原子。在此期间电子云也重新分配,α-碳原子与β-碳原子间的π键已部分形成,经过如下所示过渡态后,反应继续进
Science:科学家在大脑中鉴别出与负面情绪相关特殊受体
近日,一项刊登在国际杂志Science上的研究报告中,来自悉尼大学等机构的科学家们通过研究在大脑中鉴别出了一种被认为与消极情绪相关联的特殊大脑受体,相关研究结果有望帮助开发新型靶向性疗法。图片来源:CC0 Public Domain 研究者表示,这种特殊的大脑受体能够有效调节机体的消极情绪(负
Science:安全地给大脑照光
近日,加拿大的研究人员找到了一种将微型可探测的发光二极管(LED)安全地插入到啮齿动物脑中的方法。相关研究刊登在了近期出版的《科学》(Science)杂志上。 科学家研发了这种新的技术,并接着用他们的植入式装置来刺激可自由行动的啮齿动物的神经元,使得它们能将多巴胺及其它