Science:暴饮暴食的大脑作用机制
60年前,科学家们利用电刺激小鼠大脑区域,诱发这些无论饥饿与否的动物进食。近期来自北卡罗来纳大学医学院的研究人员破解了这一关键的分子机制,发现了诱发此种行为的精确细胞连接。这一研究成果公布在9月27日的Science杂志上,将有助于解析肥胖的病因,并由此提出针对厌食,神经性贪食,暴饮暴食的新治疗方法。 文章的通讯作者,北卡罗来纳大学医学院细胞生物学和生理学副教授Garret Stuber说:“这项研究指出,肥胖和其它饮食性失调都具有其神经学基础”,“随着研究的深入,我们就可以弄清楚如何调控大脑特殊区域的活性,研发治疗方法。” 早在20世纪50年代,科学家就利用电刺激大脑中一个称为外侧下丘脑(lateral hypothalamus)的区域,当时他们就知道这能刺激许多不同类型的脑细胞。Stuber教授希望能聚焦于一种细胞类型——终纹床核(bed nucleus of the stria termin......阅读全文
研究揭示神经元极性发育分子与细胞机制
中科院上海生科院神经所蒲慕明研究组研究了神经元的形态建成机制,从而揭示了神经元极性发育的分子与细胞机制。相关成果已在线发表于美国《国家科学院院刊》。 在哺乳动物海马齿状回结构中,颗粒细胞在持续不断地产生。这种成年新生的神经元,在记忆形成和情绪调控中均发挥重要作用。颗粒细胞具有经典的双极性结
研究发现“僵尸”脑细胞或能发育为“工作神经元”
近日,一项刊登在国际杂志Science Advances上的研究报告中,来自弗朗西斯克里克研究所等机构的科学家们通过研究发现,在大脑生长过程中预防神经元的死亡,意味着这些“僵尸”细胞可以发展成为功能性的神经元细胞。图片来源:Public Domain 在大脑发育过程中,大量神经元会自我破坏作为
脑损伤激活胶质细胞产生神经元研究获进展
8月23日,eLife 期刊在线发表了中国科学院脑科学与智能技术卓越创新中心/神经科学研究所、上海脑科学与类脑研究中心、神经科学国家重点实验室何杰研究组题为《脑损伤激活斑马鱼视顶盖放射状胶质细胞的细胞周期进入随机性及命运决定机制》的研究论文。该研究回答了两个关于胶质细胞如何响应脑损伤的关键性问题
神经元细胞根据神经元的机能分类介绍
1.感觉(传入)神经元: 接受来自体内外的刺激,将神经冲动传到中枢神经。神经元的末梢,有的呈游离状,有的分化出专门接受特定刺激的细胞或组织。分布于全身。在反射弧中,一般与中间神经元连接。在最简单的反射弧中,如维持骨骼肌紧张性的肌牵张反射,也可直接在中枢内与传出神经元相突触。一般来说,传入神经元
eLife:脑损伤激活胶质细胞产生神经元研究获进展
8月23日,eLife 期刊在线发表了中国科学院脑科学与智能技术卓越创新中心/神经科学研究所、上海脑科学与类脑研究中心、神经科学国家重点实验室何杰研究组题为《脑损伤激活斑马鱼视顶盖放射状胶质细胞的细胞周期进入随机性及命运决定机制》的研究论文。该研究回答了两个关于胶质细胞如何响应脑损伤的关键性问题
脑损伤激活胶质细胞产生神经元研究获新进展
胶质细胞是人脑中数量最多的细胞。但是,在人脑创伤情况下,胶质细胞的潜在反应和作用还很不清楚?中国科学院脑科学与智能技术卓越创新中心何杰研究组开展的研究,回答了两个关于胶质细胞如何响应脑损伤的关键性问题:损伤激活的胶质细胞如何进入细胞周期?损伤激活的胶质细胞如何选择产生胶质细胞还是神经元?近日,e
成纤维细胞转分化为神经元的研究取得进展
神经干细胞以及神经元研究是神经系统疾病治疗和再生医学的前沿领域,对理解大脑的发育、可塑性以及神经系统疾病的诊断和治疗有重要价值。随着我国人口老龄化趋势的加剧,脑缺血、中风以及老年痴呆、帕金森等神经系统损伤和退行性疾病的患病比例不断增高,这些疾病中神经元的功能退化和死亡是对研究治疗和药物开发的极大
关于神经元细胞的简介
神经元即神经元细胞,是神经系统最基本的结构和功能单位。分为细胞体和突起两部分。细胞体由细胞核、细胞膜、细胞质组成,具有联络和整合输入信息并传出信息的作用。突起有树突和轴突两种。树突短而分枝多,直接由细胞体扩张突出,形成树枝状,其作用是接受其他神经元轴突传来的冲动并传给细胞体。轴突长而分枝少,为粗
在将皮肤细胞转变成神经元细胞研究中取得突破性进展
Dr. Zhiping 与 Dr. Ami Citri合作,在操控人类胚胎和出生后的成纤维细胞转变成功能性的神经元细胞(iN)的研究中取得突破性研究进展。 应用- 单细胞基因表达 Fluidigm技术- Biomark系统- 48.48动态微流体整合芯片 介绍美国斯坦福大学医学院以转化开创性医学研究
中科院研究获得人限制性神经元前体细胞
中国科学院广州生物医药与健康研究院赖良学博士领导的研究团队成功地将人类成纤维细胞直接转分化成为了神经元限制性前体细胞(Neuronal Restricted Progenitor,NRP)。这类细胞能在体外培养条件下大量增殖,并且仅特异分化为神经元,而不会产生胶质细胞。这一研究成果于1月2日在线
人类神经元研究新模型面世
科技日报北京4月8日电 (记者刘霞)美国威尔·康奈尔医学院科学家开发出一种创新性人类神经元模型,详细模拟了tau蛋白聚集体在大脑内的传播,这一过程会导致阿尔茨海默病和额颞叶痴呆症患者认知能力下降。新模型有助科学家找到可能阻断tau蛋白传播的新治疗靶点,是阿尔茨海默病研究领域的一项重大进展。相关论文发
人类神经元研究新模型面世
美国威尔·康奈尔医学院科学家开发出一种创新性人类神经元模型,详细模拟了tau蛋白聚集体在大脑内的传播,这一过程会导致阿尔茨海默病和额颞叶痴呆症患者认知能力下降。新模型有助科学家找到可能阻断tau蛋白传播的新治疗靶点,是阿尔茨海默病研究领域的一项重大进展。相关论文发表于5日出版的最新一期《细胞》杂志。
神经元细胞的基本信息
视网膜的神经节细胞层中的视网膜神经节细胞;肾上腺髓质中的细胞,参与交感神经系统向血液中释放肾上腺素和去甲肾上腺素的过程;以及交感神经节、副交感神经节和耳蜗神经节中的细胞。
严军研究组通过单细胞测序技术发现新的神经元亚型
2月18日,《自然-神经科学》期刊在线发表了题为《小鼠视交叉上核基因表达的时空单细胞分析》的研究论文。该研究由中国科学院脑科学与智能技术卓越创新中心(神经科学研究所)、上海脑科学与类脑研究中心、神经科学国家重点实验室严军研究组完成。该研究通过单细胞测序技术对小鼠昼夜节律中枢——视交叉上核进行了系
大鼠神经元细胞分离培养实验_解离神经元培养物的制备
实验材料母鼠试剂、试剂盒BSS仪器、耗材无菌器械显微镜实验步骤1. 杀死怀孕 18 天母鼠(常用过量 CO2 使其窒息),用无菌器械取出胚胎,放在无菌的培养皿中。2. 取下胚胎的头,放在盛有 4 ml 不含 Ca2+ 和 Mg2+ 的平衡盐溶液(BSS)的培养皿中。3. 从头颅骨上取下脑,放在 35
CRISPR最新研究进展:突破神经元研究技术屏障
马克斯·普朗克佛罗里达理工学院(MPFI)神经科学部主任Ryohei Yasuda博士和他的同事们目前正在研究人脑细胞各种代谢与信号指标在我们学习与记忆形成过程中的变化。该科研究团队的一个主要研究目标是探究人脑中不同蛋白质的行为以及这些蛋白行为对单个细胞结构和功能的影响。目前,由于目的DNA结构
研究揭示引起过度进食的神经元
研究人员已经确认了一种会引起小鼠即使在它们不饿时也会拼命吃食物及反之即使在它们挨饿时也会忍住不吃的大脑中的特定环路。 他们说,这种神经回路——它作用于外侧下丘脑(LH),LH是一个已知可控制包括喂食等动机行为的脑区——可能最终会带来对人类饮食失调以及肥胖症的新的治疗方法。Joshua
研究发现大脑中的“数学神经元”
德国图宾根大学和波恩大学最近进行的一项研究表明,大脑中的神经元会在特定的数学运算中被激活。研究结果显示,一些被检测到的神经元只在做加法时活跃,而另一些则在做减法时活跃。相关研究成果2月14日发表于《当代生物学》。 众所周知,3个苹果加2个苹果等于5个苹果。然而,在这样的计算过程中,大脑发生了什
研究发现大脑中的“数学神经元”
德国图宾根大学和波恩大学最近进行的一项研究表明,大脑中的神经元会在特定的数学运算中被激活。研究结果显示,一些被检测到的神经元只在做加法时活跃,而另一些则在做减法时活跃。相关研究成果2月14日发表于《当代生物学》。众所周知,3个苹果加2个苹果等于5个苹果。然而,在这样的计算过程中,大脑发生了什么?波恩
研究发现大脑中的“数学神经元”
德国图宾根大学和波恩大学最近进行的一项研究表明,大脑中的神经元会在特定的数学运算中被激活。研究结果显示,一些被检测到的神经元只在做加法时活跃,而另一些则在做减法时活跃。相关研究成果2月14日发表于《当代生物学》。 众所周知,3个苹果加2个苹果等于5个苹果。然
研究发现大脑中的“数学神经元”
德国图宾根大学和波恩大学最近进行的一项研究表明,大脑中的神经元会在特定的数学运算中被激活。研究结果显示,一些被检测到的神经元只在做加法时活跃,而另一些则在做减法时活跃。相关研究成果2月14日发表于《当代生物学》。 众所周知,3个苹果加2个苹果等于5个苹果。然
线粒体解码神经元活动研究获进展
中国科学院自动化研究所研究员韩华团队通过其自主研发的电镜三维成像和快速重建技术,首次展现小鼠运动皮层锥体神经元胞体和树突中数百个线粒体的三维形态,发现神经元树突中线粒体依靠较细的“线粒体纳米管道”连接在一起(管道直径30-50纳米)的现象,有力支撑线粒体解码神经元活动的研究。 相关成果“Bra
研究发现硅芯片再现神经元活动
一项新研究报告了一种制造再现生物神经元电行为的硅芯片的方法。利用这种方法,有望开发出仿生芯片来修复神经系统中因病而导致功能异常的生物电路。 英国巴斯大学的Alain Nogaret及同事设计的微电路模仿离子通道,类似生物神经元一样整合原始神经刺激并做出响应。之后,研究者在硅芯片中再现单个海马
研究发现脑内痒觉调控神经元
12月14日,《神经元》期刊在线发表了题为《导水管周围灰质中速激肽阳性神经元通过下行通路促进“痒觉-抓挠”循环》的研究论文,该研究由中国科学院神经科学研究所、脑科学与智能技术卓越创新中心、神经科学国家重点实验室孙衍刚研究组完成。通过利用在体胞外电生理记录、在体光纤记录、药理遗传以及光遗传操控等技
大脑“后勤”细胞参与指挥神经元发育
美国最新一期《科学》杂志刊载的报告显示,一向被视为大脑“后勤部队”的神经胶质细胞也参与指挥神经元发育,精确控制着神经元的生长位置和分化方向等。 神经元是生物感知外界信号、做出行动乃至产生思想的基础,神经胶质细胞则是神经元之间的填充物,在大脑中占据大部分空间。长久以来,人们认为神经胶质细胞是大脑
海马神经元细胞的分离及培养
实验概要从海马体中分离到神经元细胞,然后进行培养细胞以便进行其他的实验研究。主要试剂解剖液MEMHBSS主要设备L-多聚赖氨酸包被的平皿或盖玻片实验材料出生24h内的乳鼠实验步骤1. 用冷却的解剖液(0℃,最高2-3℃)冲洗海马两次。2. 在冷却解剖液(2-3℃)中解剖无脑膜的海马。3. 加入胰蛋白
小鼠神经元原代细胞培养步骤
小鼠大脑皮层神经元原代培养步骤: 1、 于无菌条件下切取鼠头并以75%酒精浸泡1min,解剖出完整鼠脑; 2、 预冷解剖液中分离去除软膜、血管、取大脑皮质漂洗,用眼科剪将皮质反复剪切成碎块; 3、 移入培养皿中,吸除解剖液加入0.25%胰蛋白酶2m1,37℃培养箱中消化30min; 4、
研究证实神经元可重编程为另一种神经元
美国哈佛大学干细胞生物学家通过活小鼠实验证明,脑中的神经元也能改变“身份”,通过直接谱系重编程,一种已经分化了的神经元能被转化成另一种神经元。研究人员指出,这一发现表明脑细胞并非像人们过去认为的那样是不可改变的,这有可能改变神经生物学的发展方向,并对治疗神经退行性疾病产生重大影响。相关论文在线发
胶质细胞向神经元转分化治疗神经性疾病的研究获进展
4月8日,《细胞》期刊在线发表了题为《通过CRISPR-CasRx介导的胶质细胞向神经元的转分化治疗神经性疾病》的研究论文,该研究由中国科学院脑科学与智能技术卓越创新中心(神经科学研究所)、上海脑科学与类脑研究中心、神经科学国家重点实验室杨辉研究组完成。该项研究通过运用最新开发的RNA靶向CRI
大鼠神经元细胞分离和培养实验_培养神经元支持物制备
试剂、试剂盒浓硝酸仪器、耗材玻璃盖玻片层流柜实验步骤一、盖玻片的预处理1. 玻璃盖玻片放在瓷染色架上,用蒸馏水冲洗。2. 架子放在玻璃容器中,浓硝酸泡 48 小时。3. MilliQ 水漂洗盖玻片 1 小时,重复 3 次。4. 200℃ 烤 8 小时灭菌盖玻片。5. 在层流柜中将盖玻片放在 60 m