高通量芯片技术在细胞遗传学检测领域的划时代飞跃

细胞遗传学是从细胞的角度,主要是从染色体的结构和行为来研究遗传现象,并找出遗传机制和遗传规律。目前和基础理论与临床医学紧密结合对于遗传咨询和产前诊断具有重要意义。而迅速发展的芯片技术在检测通量、分辨率、灵敏度等方面都远远超过了传统的细胞遗传学方法。因此可以说高通量芯片技术是细胞遗传学检测领域的一个跨时代的飞跃。 一、细胞遗传学研究方法进展 细胞遗传学是遗传学与细胞学相结合的一个遗传学分支学科。研究对象主要是真核生物,特别是包括人类在内的高等动植物。此后又衍生出一些分支学科,研究内容进一步扩大。它把遗传学研究和细胞学方法结合起来。从细胞的角度,主要是从染色体的结构和行为来研究遗传现象、找出遗传机制和遗传规律。目前细胞遗传学的基础理论与临床医学紧密结合的新兴边缘科学,研究染色体畸变与遗传病的关系等,对于遗传咨询和产前诊断具有重要意义。目前主要的研究方法有以下几种。 1. 核型分析 将待测的细胞的染色体按照......阅读全文

高通量芯片技术在细胞遗传学检测领域的划时代飞跃

  细胞遗传学是从细胞的角度,主要是从染色体的结构和行为来研究遗传现象,并找出遗传机制和遗传规律。目前和基础理论与临床医学紧密结合对于遗传咨询和产前诊断具有重要意义。而迅速发展的芯片技术在检测通量、分辨率、灵敏度等方面都远远超过了传统的细胞遗传学方法。因此可以说高通量芯片技术是细胞遗传学检测领域的一

微纳3D打印高通量类器官芯片,解决细胞生长难题

近日,来自南昌大学第一附属医院、复旦大学、摩方精密、昆明医科大学等联合研究团队,成功研发出一款新型类器官培养平台,可用于培养厘米级肿瘤或器官源。该类器官芯片由摩方精密面投影微立体光刻(PμSL)技术3D打印制备,内部集成微米级仿生微血管网络,并引入灌注装置以模拟血流动力学特征,在实现营养液持续供给与

Dolomite微流控芯片成功用于高通量单细胞DNA/RNA测序

随着现代生物学的发展,细胞群体的研究已不再能满足科研需求。单细胞测序通过对单个细胞进行测序,解决了用组织样本测序或样本少时无法解决的细胞异质性难题,为科学家研究解析单个细胞的行为、机制、与机体的关系等提供了新方向。 2011 年,《自然方法》杂志( Nature Methods )将单细胞测序列为年

高通量芯片式分析仪相关叙述

  技术指标  1. 离子源是是密闭的,与外界环境隔离,与传统的敞开式Nano离子源相比,可有效避免环境带来的背景离子;  2. 质量范围: 2-2,000 amu;  3. 分辨率: 2.5M (半峰宽≤0.4Da);  4. ESI正离子1pg利血平柱上进样,m/z609-195,信噪比≥300

高通量细胞迁移筛选

细胞迁移是一个活的生物生长和维持生命过程中不可缺少的的关键过程。为了完成相应的功能,体内的细胞经常会以特定的方向迁移到特定的位置。迁移是一个循环的过程,细胞向前端伸出突触,缩回其尾端。动物组织中的细胞发生迁移主要是为了响应特定的外部信号。细胞迁移对于胚胎发育、伤口愈合、分化以及免疫应答等都是非常重要

飞行喷墨式生物芯片点样技术在超高通量抗体芯片开发...

飞行喷墨式生物芯片点样技术在超高通量抗体芯片开发的应用上海交通大学系统生物医学研究院3月12日报道,国际知名期刊Science Advances在线发表了上海交大陶生策团队,Abmart孟逊团队和西北大学联合研究的最新研究成果:An Array of 60,000 Antibodies fo

细胞遗传学检查

   1.染色体检查 染色体检查亦称核型分析(karyotype analysis)是确诊染色体病的主要方法。目前随着显带技术的应用以及高分辩率染色体显带技术的出现和改进,能更准确地判断和发现更多的染色体数目和结构异常综合征,还可以发现新的微畸变综合征。值得注意的是,染色体检查应结合临床表现

我国高通量微生物培养芯片研究取得进展

  微生物已经在工业、农业、能源、环境、医药等诸多领域发挥着无可替代的作用。筛选获得优良的菌种是提升相关产业技术水平的重要途径。通常,微生物的液体培养筛选需要同时在数十上百个培养瓶或试管中进行。这使得整个筛选过程劳动强度大,效率较低。   最近,中科院苏州纳米技术与纳米仿生研究所国际实验室的甘明哲

高通量细胞分析设备简介

  仪器主要用途:可用于细胞的定性和定量分析(包括检测细胞表面和细胞浆抗原、细胞因子、细胞内DNA、RNA含量等,定量分析细胞内pH值,蛋白总含量、DNA及RNA含量、免疫表现、细胞周期动力学、细胞特殊配体、细胞生物活性鉴定、细胞凋亡研究、细胞功能分析、钙流等),并将具有将特定形状或功能的细胞从混合

细胞遗传学的简介

  细胞遗传学,同时也是在细胞层次上进行遗传学研究的遗传学分支学科 行为和传递等机制及其生物学效应。  遗传学和细胞学结合建立了细胞遗传学,主要是从细胞学的角度, 特别是从染色体的结构和功能, 以及染色体和其他细胞器的关系来研究遗传现象, 阐明遗传和变异的机制。  细胞遗传学是遗传学与细胞学相结合的

细胞遗传学的分析

  染色体携带着遗传物质。了解染色体的结构和功能是遗传学的重要任务之一。染色体数目和结构的异常伴同许多疾病,包括与妇产科有关的遗传性疾病。所以在显微镜下作染色体的分析是检查和诊断妇产科遗传病症的有用工具。  1、进行细胞遗传学分析的指针:  ① 肯定和排除某些已知的染色体综合征的诊断;  ② 性分化

细胞遗传学的研究

  从细胞遗传学衍生的分支学科主要有体细胞遗传学——主要研究体细胞,特别是离体培养的高等生物体细胞的遗传规律;分子细胞遗传学——主要研究染色体的亚显微结构和基因活动的关系;进化细胞遗传学——主要研究染色体结构和倍性改变与物种形成之间的关系;细胞器遗传学——主要研究细胞器如叶绿体、线粒体等的遗传结构;

细胞衰老的遗传学派

  认为衰老是遗传决定的自然演进过程,一切细胞均有内在的预定程序决定其寿命,而细胞寿命又决定种属寿命的差异,而外部因素只能使细胞寿命在限定范围内变动。  有以下三种学说  第一种  细胞有限分裂学说  L.Hayflick (1961)报道,人的纤维细胞在体外培养时增殖次数是有限的。后来许多实验证明

甲基化芯片在表观遗传学中的应用

  表观遗传改变可以定义为基因的遗传性或获得性改变,但是这种改变和DNA序列改变无关。DNA甲基化是最为常见的表观遗传改变;启动子或第一外显子CpG岛中的甲基化改变将导致基因表达失活;组蛋白的化学修饰也可以作为表观遗传改变;组蛋白发生乙酰化改变的基因通常被开启。    CpG岛的异常甲基化是导致基

甲基化芯片在表观遗传学中的应用

表观遗传改变可以定义为基因的遗传性或获得性改变,但是这种改变和DNA序列改变无关。DNA甲基化是最为常见的表观遗传改变;启动子或第一外显子CpG岛中的甲基化改变将导致基因表达失活;组蛋白的化学修饰也可以作为表观遗传改变;组蛋白发生乙酰化改变的基因通常被开启。CpG岛的异常甲基化是导致基因沉默和过度表

高通量细胞分析产品推荐

  生化药物筛选虽然十多年前就已经规范化了,但药物疗效并不是总能实现预期效果的。在试管中看起来效果不错的靶标,在动物或者人类试验中却结果不佳,这一部分是由于毒性的问题,另外一部分则是由于药物在体内被处理的过程,与在单纯化学相互作用环境中的不同。科学家们希望能通过以细胞为基础的分析方法,来进行药物研发

苏州纳米所高通量微生物培养芯片研究取得进展

  微生物已经在工业、农业、能源、环境、医药等诸多领域发挥着无可替代的作用。筛选获得优良的菌种是提升相关产业技术水平的重要途径。通常,微生物的液体培养筛选需要同时在数十上百个培养瓶或试管中进行。这使得整个筛选过程劳动强度大,效率较低。   最近,中科院苏州纳米技术与纳米仿生研究所国际实验室的甘明哲

上交大构建双芯片系统用于转基因作物高通量检测

记者从上海交通大学获悉,该校科研人员利用高通量多重PCR芯片结合寡核苷酸探针芯片,获得了转基因作物高通量检测的最新成果。相关论文日前发表于美国化学会《分析化学》杂志,并申请相关ZL。  据了解,如何从复杂样本中对众多转基因作物进行快速有效的检测和标识,在技术上是一个重大挑战。为此,科学家发

细胞遗传学的发展历史

  细胞遗传学,同时也是在细胞层次上进行遗传学研究的遗传学分支学科 行为和传递等机制及其生物学效应。  遗传学和细胞学结合建立了细胞遗传学,主要是从细胞学的角度, 特别是从染色体的结构和功能, 以及染色体和其他细胞器的关系来研究遗传现象, 阐明遗传和变异的机制。  细胞遗传学是遗传学与细胞学相结合的

体细胞遗传学的应用

  应用细胞融合、染色体鉴定、生化鉴定、免疫学鉴定等技术,已经建立了许多种基因定位方法,使人的基因定位的研究取得了快速的进展。例如,可利用中国仓鼠的细胞和人的体细胞融合的杂种细胞在传代培养过程中不断排斥人的染色体的现象来进行基因定位:如发现杂种细胞中人的9号染色体被排斥后便失去ABO血型抗原,就可以

体细胞遗传学的简史

  1907年,美国学者R·G·哈里森第一次把神经细胞在体外培养成活。1956年,美国学者T·T·帕克使单个哺乳动物体细胞在体外培养的条件下分裂增殖成功,首次提供了用微生物学方法在严格控制的条件下进行体细胞遗传学研究的材料,简化了体外获得高等动物体细胞克隆的程序,把体细胞遗传学的研究推进到一个新的阶

细胞遗传学的基本简介

细胞遗传学(英语:Cytogenetics)是遗传学下的一个分支,主要研究的是染色体与细胞表现之间的关系(尤其是在有丝分裂和减数分裂期间)。与之相关的技术包括核型、G显带染色体分析、其他遗传显带技术,以及诸如荧光原位杂交(FISH)和比较基因组杂交(CGH)等分子遗传学技术。

细胞遗传学——染色体

Chromosome Staining and Banding Technique (Primate Cytogenetics Network)Protocols for different staining method, each is in great detail.  Karyotype A

体细胞遗传学的介绍

  体细胞遗传学(somatic cell genetics)是以体外培养的高等动植物和人的体细胞为主要研究对象的遗传学分支学科,体细胞遗传学以高等生物的体细胞为实验材料,采用细胞离体培养、细胞融合和遗传物质在细胞间转移等方法,研究真核细胞的基因结构功能及其表达规律等,克隆技术的发展和成就,使人们期

体细胞遗传学的研究

  高等生物的遗传学研究一般都通过分析遗传性状在有性生殖子代中的分布和出现频率来进行。可是高等生物的生殖周期长,子代个体数目少,对于人类来讲则又不能在严格的实验条件下进行杂交实验,所以给研究带来了一定的困难。但是作为高等生物个体生命活动的基本单位的每一体细胞一般都包含着全套基因组,因此将体细胞在离体

新型超高通量悬浮芯片的设计构建获得突破性进展

  近日,上海交通大学生物医学工程学院古宏晨-徐宏研究团队在新型超高通量悬浮芯片的设计构建及用于单反应多指标生物检测技术方面取得突破性进展,研究成果“Precisely Encoded Barcodes through the Structure-Fluorescence Combinational

中国首例“芯片试管婴儿”在郑州诞生

  一名3公斤重的“芯片试管婴儿”日前在河南省的郑州大学第一附属医院诞生,记者3月12日从该院院长阚全程教授处了解到,经过几天的体检和观察,目前该女婴状况良好。  “芯片试管婴儿”是应用单细胞单核苷酸多态性基因芯片(SNP芯片)技术进行胚胎植入前遗传学诊断的试管婴儿。阚全程说,是次“芯片试

如何实现高通量的单细胞分选?

 单细胞分选通过集成基于介电的单细胞捕获释放和电磁阀吸吮技术,实现了高速流动状态下单细胞的捕获、采集、释放和分选,通量达~60个细胞/分钟。    为了进一步提高通量,研究人员提出,单细胞经液滴包裹后,通过耦合介电可实现高通量分选。  首先,液滴表面凸/凹的形状会产生透镜效应,影响激光聚焦,降低空间

高通量单细胞技术获得新突破

  人类肠道是一件了不起的事情。每周,肠道都会再生一层新的内皮细胞,脱落的表面面积相当于一个小型公寓,并用新的细胞进行修复。几十年来,研究人员已经知道,负责这一改头换面行为的是肠道干细胞,但是直到今年,美国北卡大学教堂山分校(UNC)医学、细胞生物学和生理学、生物医学工程副教授Scott Magne

培育细胞遗传学的检测技能

   细胞培育是体外研讨细胞生物学性状、遗传学及分子生物学特性zui直接有效的手法。培育细胞遗传学的主要检测技能,包含性染色体的检测、染色体闪现、染色体显带及染色体基因定位等。对培育细胞的分子生物学检测主要包含细胞DNA检测、RNA检测及蛋白质的检测,而相关的生物学检测主要包含细胞酶学检测及细胞凋亡