水生所质疑光合膜形成机理获七实验室联合研究结果支持
光合作用是生物圈的能量基础,而光合作用发生于称为类囊体膜的光合膜上,因而光合膜形成机理成为生物学的重要问题之一。欧洲学者曾于2001年在PNAS同一期发表两篇论文(98: 4238-4242; 98: 4243-4248),分别在蓝藻(集胞藻)和高等植物(拟南芥)报道了一种蛋白VIPP1对于类囊体膜形成的关键作用,认为该种蛋白能够促使蓝藻细胞膜或植物叶绿体内层被膜形成膜泡,这些膜泡可能运输并融合到类囊体上,成为类囊体膜的来源。其展示的证据显示:在蓝藻中插入失活vipp1基因,则类囊体膜基本解体消失,丧失光合作用活性;在植物中T-DNA插入引起vipp1基本丧失表达,导致叶绿体膜泡不能形成,类囊体形成受抑制。对于VIPP1的这一功能认定在之后8年中主导了对于光合膜形成机理的认识。 但是,中国科学院水生生物研究所藻类遗传学科组高宏在攻读博士学位期间的研究发现,vipp1是蓝藻的必需基因,根本不能被敲除。如果构建以铜......阅读全文
关于HLA基因复合体的基因组成介绍
人类的主要组织相容性复合体(majorhistocompatibilitycomplex,MHC)称为HLA复合体,位于第6对染色体的短臂上,长度为4分摩(centimorgan,cM),约为4000kb。整个复合体上有近60个基因座,已正式命名的等位基因278个。根据编码分子的特性不同,可将整
叶绿体蛋白转运与质量控制的新机制获揭示
原文地址:http://news.sciencenet.cn/htmlnews/2022/6/481871.shtm 近日,中科院植物研究所研究员杨文强团队与合作者在《植物细胞》发表了最新研究成果,揭示了莱茵衣藻叶绿体基因组最大基因编码的蛋白Orf2971参与蛋白转运和质量控制的重要分子机制。
研究团队揭示叶绿体蛋白转运与质量控制的新机制
叶绿体是光合作用的场所,也是重要的生物反应器。作为半自主细胞器,叶绿体含有3000多个蛋白,其自身基因组仅编码100个左右蛋白,其他蛋白由核基因组编码并通过叶绿体被膜上的TOC和TIC复合体转运。大部分核基因编码的前体蛋白以未折叠状态进入转运复合体,分子伴侣和蛋白酶组成的质量控制系统可确保所有进
美国完成团藻基因组测序-有望破解光合作用玄机
在为交通运输提供碳中性(平衡)燃料这条漫长且艰难的道路上,美国能源部正寻求多种途径力图实现自己的目标。能源部的努力包括探寻自然界中潜在的新型燃料资源,它们包括从陆地上可作为纤维质原料的植物(如快速生长的树木和多年生牧草)到水中及其他生长环境中的产油生物(如海藻和细菌),极具多样性。
起始复合体
中文名起始复合体外文名pre-replicative complex 2(PRC2)定义DNA复制起点的引发体,亦称为起始复合体。在DNA复制起点(简写为ori)形成。作用即为启动DNA复制。
研究揭示叶绿体蛋白转运马达新功能
叶绿体是植物进行光合作用的细胞器。正常发育过程受到核基因组和叶绿体基因组在多个层次的协同调控。核质互作的分子机理是叶绿体生物发生的核心科学问题之一。光合膜蛋白复合体的反应中心亚基通常由叶绿体基因编码,而外周蛋白和天线蛋白由核基因组编码。这些核基因组编码的叶绿体蛋白,在细胞质中合成,而后通过叶绿体
植物所揭示叶绿体蛋白转运马达新功能
叶绿体是植物进行光合作用的细胞器。正常发育过程受到核基因组和叶绿体基因组在多个层次的协同调控。核质互作的分子机理是叶绿体生物发生的核心科学问题之一。光合膜蛋白复合体的反应中心亚基通常由叶绿体基因编码,而外周蛋白和天线蛋白由核基因组编码。这些核基因组编码的叶绿体蛋白,在细胞质中合成,而后通过叶绿体被膜
光合作用“绿巨人”蓄势待发
光合作用是地球生物安全高效地获取太阳能量的主要途径。在植物中,运行光合作用的场所——光合膜有着复杂而精细的结构。 北京时间12月9日,《自然》以长文形式在线发表了中科院植物研究所(以下简称植物所)匡廷云院士团队与浙江大学张兴团队联合完成的突破性研究成果。 55个蛋白亚基的叶绿体超分子复合体的
光合作用“绿巨人”蓄势待发
光合作用是地球生物安全高效地获取太阳能量的主要途径。在植物中,运行光合作用的场所——光合膜有着复杂而精细的结构。 北京时间12月9日,《自然》以长文形式在线发表了中科院植物研究所(以下简称植物所)匡廷云院士团队与浙江大学张兴团队联合完成的突破性研究成果。 他们首次解析了大麦中一个包含55个
海洋被子植物Zostera-marina的PSI中依赖于NDH高效的环式...1
海洋被子植物Zostera marina的PSI中依赖于NDH高效的环式电子通路作者:Ying Tan, Quan Sheng Zhang(张全胜,通讯作者), Wei Zhao, Zhe Liu, Ming Yu Ma, Ming Yu Zhong, Meng Xin Wang(烟台大学海洋学院)
水生所质疑光合膜形成机理获七实验室联合研究结果支持
光合作用是生物圈的能量基础,而光合作用发生于称为类囊体膜的光合膜上,因而光合膜形成机理成为生物学的重要问题之一。欧洲学者曾于2001年在PNAS同一期发表两篇论文(98: 4238-4242; 98: 4243-4248),分别在蓝藻(集胞藻)和高等植物(拟南芥)报道了一种蛋白VIPP1
转录起始复合体
中文名转录起始复合体真核细胞启动子上的TATA框转录因子TFIIA,TFIIB转录起始复起始转录的“分子机器”定义真核细胞中,启动子上的TATA框与转录因子TFIID结合形成稳定的复合物,然后由其他转录因子(TFIIA,TFIIB,TFIIF,TFIIE,TFIIH等)和RNA聚合酶按一定顺序与DN
什么是联会复合体?
联会复合体(synaptonemal complex)是减数分裂Ⅰ的偶线期中,配对的两条同源染色体之间形成的一种复合结构,主要由侧生组分、中间区和连接侧生组分与中间区的SC纤维组成,它与染色体的配对,交换和分离密切相关。
缺失复合体的概念
中文名称缺失复合体英文名称deletion complex定 义带有不同缺失染色体的细胞或个体。应用学科遗传学(一级学科),细胞遗传学(二级学科)
联会复合体的概念
联会复合体(synaptonemal complex)是减数分裂Ⅰ的偶线期中,配对的两条同源染色体之间形成的一种复合结构,主要由侧生组分、中间区和连接侧生组分与中间区的SC纤维组成,它与染色体的配对,交换和分离密切相关。
核孔复合体的功能
核孔复合体的功能是核质交换的双向选择性亲水通道,是一种特殊的跨膜运输的蛋白质复合体。他具有双功能和双向性。双功能表现在两种运输方式:被动扩散与主动运输。双向性表现在既介导蛋白质的入核运输,又介导RNA RNP等的出核运输。 1949-1950年间,H.G.Callan与S.G.Tomlin在用
核孔复合体的定义
核孔复合体是镶嵌在内外核膜上的蓝状复合体结构,主要由胞质环、核质环、核蓝等结构与组成,是物质进出细胞核的通道。 细胞核的核膜上呈复杂环状结构的通道,对细胞核与细胞质之间的物质交换有一定调节作用。亦称为核膜孔或核孔。 结构上,核孔复合体主要由蛋白质构成;功能上,核孔复合体可以看做是一种特殊的跨
什么是TCR复合体?
TCR复合体(TCR-CD3)是T细胞受体与一组CD3分子以非共价键结合而形成的TCR-CD3复合物,表达于T细胞表面,是T细胞识别抗原和转导信号的主要单位。TCR的作用是能特异性识别APC或靶细胞表面的MHC分子-抗原肽复合物,而CD3分子的功能是转导TCR识别抗原所活化的信号。
核孔复合体的结构
核孔复合体是指镶嵌在核孔上的一种复杂的结构。主要有以下四种结构组分: 1.胞质环:位于核孔边缘的胞质面一侧,又称外环; 2.核质环:位于核孔边缘的核质面一侧,又称内环; 3.辐:由核孔边缘伸向中心,呈辐射状八重对的纤维; 4.栓:又称中央栓。位于核孔中心,呈颗粒状或棒状。 核孔复合体对
研究发现叶绿体蛋白质传送器的组装原理
叶绿体是植物和藻类细胞中可以通过光合作用将光能转化为化学能的细胞器。作为一种由两层膜包被的特殊细胞器,叶绿体含有自身的基因组,且其表达是与核基因组的表达紧密协调的。叶绿体的蛋白质有两种来源,有一小部分(50-200个)由叶绿体基因组编码,而大多数的其他叶绿体蛋白质(2000-3000个)则由核基
Nature:柳振峰团队发现叶绿体蛋白质传送器的组装原理
叶绿体是植物和藻类细胞中可以通过光合作用将光能转化为化学能的细胞器。作为一种由两层膜包被的特殊细胞器,叶绿体含有其自身的基因组,其表达是与核基因组的表达紧密协调的。 叶绿体的蛋白质有两种来源,有一小部分(50-200个)是由叶绿体基因组编码,而大多数的其它叶绿体蛋白质(2000-3000个)则
研究发现叶绿体蛋白质传送器的组装原理
叶绿体是植物和藻类细胞中可以通过光合作用将光能转化为化学能的细胞器。作为一种由两层膜包被的特殊细胞器,叶绿体含有自身的基因组,且其表达是与核基因组的表达紧密协调的。叶绿体的蛋白质有两种来源,有一小部分(50-200个)由叶绿体基因组编码,而大多数的其他叶绿体蛋白质(2000-3000个)则由核基
研究发现叶绿体蛋白质传送器的组装原理
叶绿体是植物和藻类细胞中可以通过光合作用将光能转化为化学能的细胞器。作为一种由两层膜包被的特殊细胞器,叶绿体含有自身的基因组,且其表达是与核基因组的表达紧密协调的。叶绿体的蛋白质有两种来源,有一小部分(50-200个)由叶绿体基因组编码,而大多数的其他叶绿体蛋白质(2000-3000个)则由核基
柳振峰课题组等发现叶绿体蛋白质传送器的组装原理
叶绿体是植物和藻类细胞中可以通过光合作用将光能转化为化学能的细胞器。作为一种由两层膜包被的特殊细胞器,叶绿体含有自身的基因组,且其表达是与核基因组的表达紧密协调的。叶绿体的蛋白质有两种来源,有一小部分(50-200个)由叶绿体基因组编码,而大多数的其他叶绿体蛋白质(2000-3000个)则由核基
中国农业大学PNAS解析植物重要光系统
来自中国农业大学、加州大学伯克利分校的研究人员证实,在拟南芥中光系统II ( Photosystem II,PSII)反应中心蛋白D1的C端加工对PSII装配及发挥功能至关重要。这一研究发现在线发表在9月16日的《美国科学院院刊》(PNAS)杂志上。 中国农业大学食品科学与营养工程学院
我国学者揭示硅藻FCP晶体结构及结构基础
硅藻是海洋中最“成功”的浮游光合生物之一,它们通过光合作用贡献了地球上每年约20%的有机物生产力,相当于固定了近五分之一的二氧化碳,高于全球所有热带雨林的贡献,这与硅藻特有的捕光天线蛋白“岩藻黄素-叶绿素a/c蛋白复合体”(Fucoxanthin chlorophyll a/c protein,
李小波博士等发现光合作用所需的多个候选基因
莱茵衣藻(Chlamydomonas reinhardtii)是一种非常有价值的真核模式生物,被广泛用于与光合作用、呼吸作用、脂类合成、细胞运动(生物鞭毛)、非生物胁迫等生物学过程相关的功能研究(图1)【1】。长期以来,通过同源重组将外源基因插入是敲除莱茵衣藻基因的主要方式,与外源基因的随机插入
同源异形复合体的概念
中文名称同源异形复合体英文名称homeotic complex;HOM-C定 义昆虫胚胎发育中控制体节和形态建成的同源异形基因成簇存在而形成的复合体。应用学科遗传学(一级学科),发育遗传学(二级学科)
同源异形复合体的定义
中文名称同源异形复合体英文名称homeotic complex;HOM-C定 义昆虫胚胎发育中控制体节和形态建成的同源异形基因成簇存在而形成的复合体。应用学科遗传学(一级学科),发育遗传学(二级学科)
多酶复合体是什么?
多酶复合体(multienzymecomplex)常包括三个或三个以上的酶,组成一个有一定构型的复合体。复合体中第一个酶催化的产物,直接由邻近下一个酶催化,第二个酶催化的产物又为复合体第三酶的底物,如此形成一条结构紧密的“流水生产线”,使催化效率显着提高。葡萄糖氧化分解过程的丙酮酸脱氢酶复合体,属于