大气压离子化技术
大气压离子化技术(API)是一类软离子化方式,它的出现,成功地解决了液相色谱和质谱联用的接口问题,使液相色谱-质谱联用逐渐发展成为成熟的技术。API主要包括电喷雾离子化(ESI)、离子喷雾离子化(ISI)和大气压化学离子化(APCI)3种模式。它们的共同点是样品的离子化在处于大气压下的离子化室完成,离子化效率高,大大增强了分析的灵敏度和稳定性。ESI,ISI和APCI3种电离方式同时可作为LC-MS的接口。 API接口/离子源由五部分组成:①液体流入装置或喷雾探针;②大气压离子源区,通过ESI、APCI或其他方式在此产生离子;③样品离子化孔;④大气压至真空接口;⑤离子光学系统,在此将离子运送到质谱分析器。1.电喷雾电离(ESI) 在ESI中,离子的形成是被测分子在带电液滴的不断收缩过程中喷射出来的,即离子化是在液态下完成的。经液相色谱分离的样品溶液流......阅读全文
大气压离子化技术
大气压离子化技术(API)是一类软离子化方式,它的出现,成功地解决了液相色谱和质谱联用的接口问题,使液相色谱-质谱联用逐渐发展成为成熟的技术。API主要包括电喷雾离子化(ESI)、离子喷雾离子化(ISI)和大气压化学离子化(APCI)3种模式。它们的共同点是样品的离子化在处于大气压下的离子化室完成,
液质联用的大气压化学离子化技术
大气压化学离子化(APCI)技术应用于液-质联用仪是由Horning 等人于20 世纪70 年代初发明的,直到20 世纪80 年代末才真正得到突飞猛进的发展,与ESI 源的发展基本上是同步的。但是APCI 技术不同于传统的 化学电离接口,它是借助于 电晕放电启动一系列 气相反应以完成离子化过程,
大气压离子化接口技术包括哪些技术
大气压离子化技术(API)是一类软离子化方式,它的出现,成功地解决了液相色谱和质谱联用的接口问题,使液相色谱-质谱联用逐渐发展成为成熟的技术。API主要包括电喷雾离子化(ESI)、离子喷雾离子化(ISI)和大气压化学离子化(APCI)3种模式。它们的共同点是样品的离子化在处于大气压下的离子化室完
实验室分析仪器质谱分析词汇大气压电离(API)
该专业用语通常指的是,诸如电喷雾电离(ESI)、大气压化学电离(APCI)和其它在大气压下操作的技术。
实验室分析仪器质谱仪器的组成离子源
离子源在离子源中样品被电离成离子。不同性质的样品可能需要不同的电离方式。近年来,生物大分子的分析对质谱的电离方式提出了更高的要求,新的离子源不断出现。如电子轰击离子化(EI)、化学离子化(CI)、激光解吸离子化(LDI)、基质辅助激光解吸/离子化(MALDI)、大气压离子化(API)、电喷雾离子化(
质谱分析法术语磁场扫描
磁场扫描(magnetic field scan)以一定速度运动的离子进入磁场后,其运动行为可以用下式描述:式中,m是离子质量;z是电荷;V是离子加速电压;B是磁场强度;r是离子运动圆周半径。当加速电压V和半径r固定时,改变磁场强度可获得不同mz的离子运动轨迹,称为磁场扫描。大气压电离(atmosp
液质联用的电喷雾离子化技术相关内容
电喷雾(ESI)技术作为质谱的一种进 样方法起源于20 世纪60 年代末Dole等人的研究,直到1984 年Fenn 实验组对这一技术的研究取得了突破性进展。1985 年,将电喷雾进样与大气压离子源成功连接。1987 年,Bruins 等人发展了空气压辅助电喷雾接口,解决了流量限制问题,随后第一
液质联用技术接口的相关介绍
接口技术的发展历程 自20 世纪70 年代初,人们开始致力于液-质联用接口技术的研究。在开始的20 年中处于缓慢的发展阶段,研制出了许多种联用接口,但均没有应用于商业化生产。直到 大气压离子化(atmospheric-pressure ionization, API)接口技术的问世,液-质联用
实验室分析仪器质谱仪器的基本组成
质谱仪器能使物质粒子(原子、分子)电离成离子,并利用电磁学原理,使带电的试样离子按质荷比分离、检测进行物质分析的装置。一、质谱仪器一般由四个大系统组成:电子学系统真空系统分析系统计算机系统二、其中分析系统是质谱仪器的核心,它包括三个重要部分:离子源质量分析器质量检测器另外,为了获得离子的良好分析,必
串联四极杆液质联用仪是超高压液相色谱Z佳质谱检测器
串联四极杆液质联用仪开发的喷射流离子聚焦离子源,将对复杂基质中痕量成分的质谱检测的灵敏度、提升到了业界同类仪器的高度。串联四极杆质谱仪已广泛应用于食品安全、环境分析、药物代谢动力学研究、代谢物鉴定、杂质分析等多种领域;同时,在蛋白组学、代谢组学的研究中,也常用三重串联四极杆质谱仪进行方法和目标物的
实验室分析仪器液质联用仪发展简史
1977年,LC-MS开始投放市场;1978年,LC-MS首次用于生物样品中的药物分析;1989年,LC-MS-MS取得成功1991年;API LC-Ms用于药物开发;1997年,LC-MS用于药物动力学筛选;1999年,API Q-TOFLC-MS-MS投放市场,大气压离子化接口的应用,彻底改变了
串联四极杆液质联用仪是超高压液相色谱最佳质谱检测器
串联四极杆液质联用仪最新开发的喷射流离子聚焦离子源,将对复杂基质中痕量成分的质谱检测的灵敏度、提升到了业界同类仪器的最新高度。串联四极杆质谱仪已广泛应用于食品安全、环境分析、药物代谢动力学研究、代谢物鉴定、杂质分析等多种领域;同时,在蛋白组学、代谢组学的研究中,也常用三重串联四极杆质谱仪进行方法
液质联用仪离子源的种类
液相色谱质谱联用仪,简称液质联用仪(LC/MS或LC/MS/MS),常用离子源从大的分类来说,主要有大气压离子源(以下简称API)、基质辅助激光解析电离源(以下简称MALDI)和快原子轰击源(以下简称FAB)三种电离方式。目前实验室最常用的大气压电喷雾电离ESI、大气压化学电离APCI、基质辅助
液质联用仪离子源的种类
液相色谱质谱联用仪,简称液质联用仪(LC/MS或LC/MS/MS),常用离子源从大的分类来说,主要有大气压离子源(以下简称API)、基质辅助激光解析电离源(以下简称MALDI)和快原子轰击源(以下简称FAB)三种电离方式。目前实验室最常用的大气压电喷雾电离ESI、大气压化学电离APCI、基质辅助
液质联用仪离子源的种类
液相色谱质谱联用仪,简称液质联用仪(LC/MS或LC/MS/MS),常用离子源从大的分类来说,主要有大气压离子源(以下简称API)、基质辅助激光解析电离源(以下简称MALDI)和快原子轰击源(以下简称FAB)三种电离方式。目前实验室最常用的大气压电喷雾电离ESI、大气压化学电离APCI、基质辅助
API3000影响因素
分析仪器 2001年第4期 清华分析中心 杨成对 摘要:简要介绍了使用APi3000液质联用,进行分析时的一些影响因素,包括样品溶剂和色谱流动相的选择,电离条件的确定以及气流的使用等。 API 3000影响因素
液质联用中的进样与质谱技术
ESI和APCI是大气压离子化(API)技术,与经典的质谱离子源处于低压(真空)条件下不同,样品的离子化是在大气压下进行的,因此APIMS要有从有从大气压之真空的接口及离子传输等装置。API是软电离技术,得到的质谱中主要是分子量信息。对于未知物分析,准确质量测定以及由此得到的化合物元素组成(分子式)
液质联用仪常用的离子源有哪些类型?
液相色谱质谱联用仪,简称液质联用仪(LC/MS或LC/MS/MS),常用离子源从大的分类来说,主要有大气压离子源(以下简称API)、基质辅助激光解析电离源(以下简称MALDI)和快原子轰击源(以下简称FAB)三种电离方式。 1、大气压离子源(API) :包括大气压电喷雾电离ESI、大气压化学电离A
串联四极杆液质联用仪可有效预防解决问题
串联四极杆液质联用仪喷射流离子聚焦离子化技术,在提高雾化温度的同时,提高了电场密度,串联四极杆液质联用仪使离子化效率得以显著提升,并有效屏蔽基质干扰;此外,在高速鞘气流的作用下,离子云密度明显增加,进而提高质谱取样效率;这些技术的进步,从离子生成和传输过程提高了质谱检测的灵敏度;同时,该离子源可
实验分析仪器质谱仪的基本结构及功能介绍
质谱仪一般由进样系统、电离源、质量分析器、真空系统和检测系统构成一、进样系统在液质联用中一般有两种进样方式。第一种是输注,即用注射器泵(syringe pump)将样品溶液直接缓慢输入到离子源。这种方法虽然简便、快速,但是需要相对多的样品,且难以实现自动进样分析。第二种是流动注射,即将样品溶液注入H
API-4000同时测定277种农药
英文文献: 用LC/MS/MS可同时检测277种农药,使用快速和简便的前处理过程,检测限约为0.001~0.02 mg/kg,总共需要三针进样检测这277种农药。应用的基质为麦芽、啤酒。 API 4000同时测定277种农药
API2000操作培训教程_英文
API 2000质谱操作培训
API3000操作培训教程_英文
API3000操作培训教程_英文
API-4000仪器的开机关机
网友总结的: API 4000仪器的开机关机
大气压化学电离质谱仪类型
大气压化学电离质谱仪类型有多种。1、按分析目的可分:实验室大气压化学电离质谱仪和工业大气压化学电离质谱仪。2、按分析对象的属性可分:大气压化学电离有机质谱仪和大气压化学电离无机质谱仪。3、按质量分析器的工作原理可分:大气压化学电离四极杆质谱仪和大气压化学电离离子阱质谱仪等。4、按联用方式可分:大气压
常见的质谱电离方式有哪些
电子离子化:电子电离(EI)为很多人所熟知。EI,通常将样品暴露在70eV的电子下,被称为"硬"技术。电子与目标分子互作用的能量,通常要比分子的化学键要强的多,因此分子发生电离。过量的能量按照特定方式打开化学键。结果产生能够预见的、可鉴别的碎片,通过这些碎片,我们能够推测出分子结构。这些能量可将
ICPMS离子化
为了更好理解样品在通过等离子体源的时候发生了什么,所以需要先了解一些放电区域的不同温度。等离子体不同温度区域 从上图等离子体的横截面可以大致看出不同区域的温度。样品经进样系统进入到雾室形成样品气溶胶。气溶胶以一定速率进行运动,会撞击形成孔洞通过等离子放电中心。在气溶胶于分析区(analytical
教您应对API工艺中的杂质
在API工艺研究的过程中,杂质的研究是其中最重要的环节之一,因为任何API的生产制备都不可能避免杂质的存在和生成,更严重的是,杂质当中的某些物质是有毒性或者是可以致癌的,如果掺杂在本来旨在治病救人的药物当中,那将产生无法估量的危害和损伤。而在实际的研发生产过程当中,杂质的研究和控制也是相当消耗时
教您应对API工艺中的杂质
在API工艺研究的过程中,杂质的研究是其中最重要的环节之一,因为任何API的生产制备都不可能避免杂质的存在和生成,更严重的是,杂质当中的某些物质是有毒性或者是可以致癌的,如果掺杂在本来旨在治病救人的药物当中,那将产生无法估量的危害和损伤。而在实际的研发生产过程当中,杂质的研究和控制也是相当消耗时
液质联用“接口”技术的发展历程
液质联用“接口”技术的发展历程自20 世纪70 年代初,人们开始致力于液-质联用接口技术的研究。在开始的20 年中处于缓慢的发展阶段,研制出了许多种联用接口,但均没有应用于商业化生产。直到大气压离子化(atmospheric-pressure ionization, API)接口技术的问世,液-质联