大气压离子化接口技术包括哪些技术

大气压离子化技术(API)是一类软离子化方式,它的出现,成功地解决了液相色谱和质谱联用的接口问题,使液相色谱-质谱联用逐渐发展成为成熟的技术。API主要包括电喷雾离子化(ESI)、离子喷雾离子化(ISI)和大气压化学离子化(APCI)3种模式。它们的共同点是样品的离子化在处于大气压下的离子化室完成,离子化效率高,大大增强了分析的灵敏度和稳定性。ESI,ISI和APCI3种电离方式同时可作为LC-MS的接口。 API接口/离子源由五部分组成:①液体流入装置或喷雾探针;②大气压离子源区,通过ESI、APCI或其他方式在此产生离子;③样品离子化孔;④大气压至真空接口;⑤离子光学系统,在此将离子运送到质谱分析器。 1.电喷雾电离(ESI) 在ESI中,离子的形成是被测分子在带电液滴的不断收缩过程中喷射出来的,即离子化是在液态下完成的。经液相色谱分离的样品溶液流入离子源。在N2流下汽化后进入强电场区域,强电场形成的库仑力使小......阅读全文

大气压离子化技术

大气压离子化技术(API)是一类软离子化方式,它的出现,成功地解决了液相色谱和质谱联用的接口问题,使液相色谱-质谱联用逐渐发展成为成熟的技术。API主要包括电喷雾离子化(ESI)、离子喷雾离子化(ISI)和大气压化学离子化(APCI)3种模式。它们的共同点是样品的离子化在处于大气压下的离子化室完成,

大气压离子化接口技术包括哪些技术

  大气压离子化技术(API)是一类软离子化方式,它的出现,成功地解决了液相色谱和质谱联用的接口问题,使液相色谱-质谱联用逐渐发展成为成熟的技术。API主要包括电喷雾离子化(ESI)、离子喷雾离子化(ISI)和大气压化学离子化(APCI)3种模式。它们的共同点是样品的离子化在处于大气压下的离子化室完

液质联用仪离子源的种类

  液相色谱质谱联用仪,简称液质联用仪(LC/MS或LC/MS/MS),常用离子源从大的分类来说,主要有大气压离子源(以下简称API)、基质辅助激光解析电离源(以下简称MALDI)和快原子轰击源(以下简称FAB)三种电离方式。目前实验室最常用的大气压电喷雾电离ESI、大气压化学电离APCI、基质辅助

液质联用仪离子源的种类

  液相色谱质谱联用仪,简称液质联用仪(LC/MS或LC/MS/MS),常用离子源从大的分类来说,主要有大气压离子源(以下简称API)、基质辅助激光解析电离源(以下简称MALDI)和快原子轰击源(以下简称FAB)三种电离方式。目前实验室最常用的大气压电喷雾电离ESI、大气压化学电离APCI、基质辅助

液质联用仪离子源的种类

  液相色谱质谱联用仪,简称液质联用仪(LC/MS或LC/MS/MS),常用离子源从大的分类来说,主要有大气压离子源(以下简称API)、基质辅助激光解析电离源(以下简称MALDI)和快原子轰击源(以下简称FAB)三种电离方式。目前实验室最常用的大气压电喷雾电离ESI、大气压化学电离APCI、基质辅助

液质联用的大气压化学离子化技术

  大气压化学离子化(APCI)技术应用于液-质联用仪是由Horning 等人于20 世纪70 年代初发明的,直到20 世纪80 年代末才真正得到突飞猛进的发展,与ESI 源的发展基本上是同步的。但是APCI 技术不同于传统的 化学电离接口,它是借助于 电晕放电启动一系列 气相反应以完成离子化过程,

液质联用仪常用的离子源有哪些类型?

液相色谱质谱联用仪,简称液质联用仪(LC/MS或LC/MS/MS),常用离子源从大的分类来说,主要有大气压离子源(以下简称API)、基质辅助激光解析电离源(以下简称MALDI)和快原子轰击源(以下简称FAB)三种电离方式。 1、大气压离子源(API)  :包括大气压电喷雾电离ESI、大气压化学电离A

液质联用技术接口的相关介绍

  接口技术的发展历程  自20 世纪70 年代初,人们开始致力于液-质联用接口技术的研究。在开始的20 年中处于缓慢的发展阶段,研制出了许多种联用接口,但均没有应用于商业化生产。直到 大气压离子化(atmospheric-pressure ionization, API)接口技术的问世,液-质联用

液相质谱(LC/MS)-离子源

1.大气压离子源(API)(包括大气压电喷雾电离ESI、大气压化学电离APCI、大气压光电离APPI)在ESI中,离子的形成是被测分子在带电液滴的不断收缩过程中喷射出来的,即离子化是在液态下完成的。经液相色谱分离的样品溶液流入离子源。在N2流下汽化后进入强电场区域,强电场形成的库仑力使小液滴样品离子

液质联用“接口”技术的发展历程

液质联用“接口”技术的发展历程自20 世纪70 年代初,人们开始致力于液-质联用接口技术的研究。在开始的20 年中处于缓慢的发展阶段,研制出了许多种联用接口,但均没有应用于商业化生产。直到大气压离子化(atmospheric-pressure ionization, API)接口技术的问世,液-质联

常见的质谱电离方式有哪些

  电子离子化:电子电离(EI)为很多人所熟知。EI,通常将样品暴露在70eV的电子下,被称为"硬"技术。电子与目标分子互作用的能量,通常要比分子的化学键要强的多,因此分子发生电离。过量的能量按照特定方式打开化学键。结果产生能够预见的、可鉴别的碎片,通过这些碎片,我们能够推测出分子结构。这些能量可将

实验室分析仪器液质联用接口技术的分类与简介

液-质联用接口技术主要是沿着三个分支发展的:﹙1﹚流动相进入质谱直接离子化,形成了连续流动快原子轰击技术等;﹙2﹚流动相雾化后除去溶剂,分析物蒸发后再离子化,形成了“传送带式”接口和离子束接口等;﹙3﹚流动相雾化后形成的小液滴解溶剂化,气相离子化或者离子蒸发后再离子化,形成了热喷雾接口、大气压化学离

质谱常用离子源

  最常用的离子源五种离子源为电子轰击源(EI)、化学电离源(CI)、电喷雾电离源(ESI)、大气压化学电离源(APCI)和基质辅助激光解吸电离源(MALDI)。目前我们所测试中心配备的主要是电子轰击源(EI)、电喷雾电离源(ESI)和大气压化学电离源(APCI)。那么我们配备的离子源的离子化原理及

液质联用中的质谱——离子源篇

  质谱主要测定的是带电离子的质量,即质荷比(m/z)。质谱主要由几大部分构成:样品入口,离子源,质量分析器,检测器,数据系统,质量分析器和检测器(许多质谱的离子源)均在真空中,由真空泵来提供所需10-3-10-10 Torr的真空度。在液质联用中,样品入口即液相色谱的流出端接入离子源,在离子源和质

实验分析仪器质谱仪大气压化学电离源结构原理及特点

1.基本原理大气压化学电离源(atmospheric pressure chemical ionization,APCI)的结构与电喷雾电离源大致相同,不同之处在于APC喷嘴的下游放置一个针状放电电极,通过放电电极的高压放电,使空气中某些中性分子电离,产生H3O+、N2+、O2+和O+等离子,溶剂分

液质联用仪质谱系统电离源有哪些?

根据样品离子化方式和电离源能量高低,通常可将电离源分为:(1)硬源:离子化能量高,伴有化学键的断裂,谱图复杂,可得到分子官能团的信息,如电子轰击,快原子轰击。(2)软源:离子化能量低,产生的碎片少,谱图简单,可得到分子量信息,如化学电离源(CI),电喷雾电离源(ESI),大气压化学(APCI)电离源

质谱分析法术语磁场扫描

磁场扫描(magnetic field scan)以一定速度运动的离子进入磁场后,其运动行为可以用下式描述:式中,m是离子质量;z是电荷;V是离子加速电压;B是磁场强度;r是离子运动圆周半径。当加速电压V和半径r固定时,改变磁场强度可获得不同mz的离子运动轨迹,称为磁场扫描。大气压电离(atmosp

液质联用中的进样与质谱技术

ESI和APCI是大气压离子化(API)技术,与经典的质谱离子源处于低压(真空)条件下不同,样品的离子化是在大气压下进行的,因此APIMS要有从有从大气压之真空的接口及离子传输等装置。API是软电离技术,得到的质谱中主要是分子量信息。对于未知物分析,准确质量测定以及由此得到的化合物元素组成(分子式)

LCMS中常用的离子源

ESI电喷雾电离电离原理:带有被测物离子的流动相流经雾化器喷雾针,在雾化针尖端发生雾化,使液滴表面富集带同种电荷的离子,内部相反电荷聚集,形成带电的液滴喷雾。由于高压电极将雾化器的喷雾针环绕,与传输毛细管进样口之间电压不同,因此在两者之间产生一个电场,液滴在电场作用下飞向传输毛细管。加热的氮气干燥器

几种常见离子源的原理和特点

①电子轰击源(EI)EI的优点:重现性好,常用做标准图谱;灵敏度高,碎片多,质谱图复杂,可获得有关分子结构的信息大EI的缺点:EI离子化方式能量高,不易获得分子离子峰,故不利于确定分子量;不适合难挥发、热不稳定化合物的分析②化学电离法(CI):化学电离法是通过离子-分子反应来进行,而不是用强电子束进

几种常见离子源的原理和特点

①电子轰击源(EI)EI的优点:重现性好,常用做标准图谱;灵敏度高,碎片多,质谱图复杂,可获得有关分子结构的信息大EI的缺点:EI离子化方式能量高,不易获得分子离子峰,故不利于确定分子量;不适合难挥发、热不稳定化合物的分析②化学电离法(CI):化学电离法是通过离子-分子反应来进行,而不是用强电子束进

几种常见离子源的原理和特点

①电子轰击源(EI)EI的优点:重现性好,常用做标准图谱;灵敏度高,碎片多,质谱图复杂,可获得有关分子结构的信息大EI的缺点:EI离子化方式能量高,不易获得分子离子峰,故不利于确定分子量;不适合难挥发、热不稳定化合物的分析②化学电离法(CI):化学电离法是通过离子-分子反应来进行,而不是用强电子束进

几种常见离子源的原理和特点

①电子轰击源(EI)EI的优点:重现性好,常用做标准图谱;灵敏度高,碎片多,质谱图复杂,可获得有关分子结构的信息大EI的缺点:EI离子化方式能量高,不易获得分子离子峰,故不利于确定分子量;不适合难挥发、热不稳定化合物的分析②化学电离法(CI):化学电离法是通过离子-分子反应来进行,而不是用强电子束进

几种常见离子源的原理和特点

①电子轰击源(EI)EI的优点:重现性好,常用做标准图谱;灵敏度高,碎片多,质谱图复杂,可获得有关分子结构的信息大EI的缺点:EI离子化方式能量高,不易获得分子离子峰,故不利于确定分子量;不适合难挥发、热不稳定化合物的分析②化学电离法(CI):化学电离法是通过离子-分子反应来进行,而不是用强电子束进

几种常见离子源的原理和特点

①电子轰击源(EI)EI的优点:重现性好,常用做标准图谱;灵敏度高,碎片多,质谱图复杂,可获得有关分子结构的信息大EI的缺点:EI离子化方式能量高,不易获得分子离子峰,故不利于确定分子量;不适合难挥发、热不稳定化合物的分析②化学电离法(CI):化学电离法是通过离子-分子反应来进行,而不是用强电子束进

几种常见离子源的原理和特点

①电子轰击源(EI)EI的优点:重现性好,常用做标准图谱;灵敏度高,碎片多,质谱图复杂,可获得有关分子结构的信息大EI的缺点:EI离子化方式能量高,不易获得分子离子峰,故不利于确定分子量;不适合难挥发、热不稳定化合物的分析②化学电离法(CI):化学电离法是通过离子-分子反应来进行,而不是用强电子束进

几种常见离子源的原理和特点

①电子轰击源(EI)EI的优点:重现性好,常用做标准图谱;灵敏度高,碎片多,质谱图复杂,可获得有关分子结构的信息大EI的缺点:EI离子化方式能量高,不易获得分子离子峰,故不利于确定分子量;不适合难挥发、热不稳定化合物的分析②化学电离法(CI):化学电离法是通过离子-分子反应来进行,而不是用强电子束进

几种常见离子源的原理和特点

①电子轰击源(EI)EI的优点:重现性好,常用做标准图谱;灵敏度高,碎片多,质谱图复杂,可获得有关分子结构的信息大EI的缺点:EI离子化方式能量高,不易获得分子离子峰,故不利于确定分子量;不适合难挥发、热不稳定化合物的分析②化学电离法(CI):化学电离法是通过离子-分子反应来进行,而不是用强电子束进

实验分析仪器质谱仪的基本结构及功能介绍

质谱仪一般由进样系统、电离源、质量分析器、真空系统和检测系统构成一、进样系统在液质联用中一般有两种进样方式。第一种是输注,即用注射器泵(syringe pump)将样品溶液直接缓慢输入到离子源。这种方法虽然简便、快速,但是需要相对多的样品,且难以实现自动进样分析。第二种是流动注射,即将样品溶液注入H

实验室分析仪器质谱仪器的大气压化学电离(APCI)

气相中放热的质子转移反应的速率常数接近于碰撞速率常数,因此化学电离能够高效地产生离子。在大气压下,化学电离反应的速率更大,电离效率应更高。设计大气压化学电离( atmospheric pressure chemical ionization,APCI)离子源的主要困难是将在大气压力下产生的离子转移到