一种限制光线的新方法以保护光线对材料缺陷不敏感
通常情况下,光通过存在缺陷的材料时会受其缺陷的影响。近期,研究人员找到了一种可以保护光线的方法,使得光线能对这种材料的缺陷不敏感。这种新方法是基于一个广泛应用于固态电子物理学的概念——“拓扑保护”。这种方法可以帮助降低光子器件的成本,同时也会提高它们的工作速度。 一个联合了宾夕法尼亚州立大学、匹兹堡大学和伊利诺伊大学研究人员的合作团队在实验中利用了一个波导晶格结构,成功地保护了中间禁带的模态频率,并把光子缺陷模式的体积最小化。在实验中,光从波导阵列的一端进入,当它在波导中传播时会被捕获和限制,被捕获的光线能不受波导中的缺陷影响,并且能够承受晶格结构中的明显缺陷。图1 该图为拓扑晶体绝缘体晶格几何中的波导阵列的截面显微镜图像。新的研究表明,这种配置结构允许研究人员以一种新的方式限制光线,最终能使光线对材料的缺陷变得不敏感,这一进展可能会促使光子器件的成本降低,同时提高它们的工作效率,如激光器和光纤。在此致谢提供图片的宾夕法尼......阅读全文
一种限制光线的新方法以保护光线对材料缺陷不敏感
通常情况下,光通过存在缺陷的材料时会受其缺陷的影响。近期,研究人员找到了一种可以保护光线的方法,使得光线能对这种材料的缺陷不敏感。这种新方法是基于一个广泛应用于固态电子物理学的概念——“拓扑保护”。这种方法可以帮助降低光子器件的成本,同时也会提高它们的工作速度。 一个联合了宾夕法尼亚州立大学、
迄今最薄芯片级光线路2D波导面世
原文地址:http://news.sciencenet.cn/htmlnews/2023/8/506563.shtm
迄今最薄芯片级光线路2D波导面世
美国芝加哥大学科学家在最新一期《科学》杂志上发表论文称,他们研制出迄今最薄的芯片级光线路——二维(2D)波导。这款只有几个原子厚的玻璃晶体可捕获和携带光,而且效率惊人,可将光传播长达一厘米的距离,在光基计算领域,这是非常遥远的距离,有望为新技术开辟道路。 将光从一个地方引导到另一个地方是现代通
中国科大实现可编程拓扑声子芯片
中国科学技术大学郭光灿院士团队教授邹长铃与清华大学教授孙麓岩、宾夕法尼亚州立大学教授Mourad Oudich和Yun Jing等开展合作研究,首次在非悬空、片上大规模可拓展的微米尺度波导中,实现了1.5吉赫兹频率的拓扑声子边缘态与鲁棒Thouless泵浦,并研制出具备电调功能的拓扑声子马赫-曾德尔
片上拓扑彩虹器件,纳米尺度新进展
近日,暨南大学光子技术研究院研究员丁伟团队和北京理工大学教授路翠翠团队、北京大学教授胡小永团队合作,在片上拓扑彩虹器件研究中取得重要进展,首次在纳米尺度的芯片上观测到显著的拓扑彩虹效应。相关研究发表于《自然—通讯》。 以光子为信息载体的微纳全光器件在光通信、光信息处理、光计算等领域有重要应用。拓
物理所一维光学超晶格系统的拓扑性质研究取得进展
拓扑绝缘体代表一种全新的量子物态:它的体态是有能隙的绝缘体,而其表面态则为没有能隙的金属态。由于其在自旋电子学和量子计算等领域的潜在应用,拓扑绝缘体的研究近年来吸引了来自物理学不同领域的极大关注和研究。拓扑绝缘体通常被认为只在二维和三维系统里才会出现。一个有意思的问题是:
再登顶刊!南京大学团队发表拓扑物理研究评述
原文地址:http://news.sciencenet.cn/htmlnews/2023/6/503480.shtm近日,南京大学固体微结构物理国家重点实验室、现代工程与应用科学学院的陈延峰教授团队的卢明辉教授课题组与西班牙马德里先进材料研究所的Johan Christensen教授课题组合作共同回
首个光学拓扑绝缘体研制成功
据物理学家组织网近日报道,以色列和德国科学家携手合作,成功研制出首个光学拓扑绝缘体,这种新设备通过一种独特的“波导”网格,为光的传输护航,可减少传输过程中的散射。科学家们表示,最新研究对光学工业的发展大有裨益。研究发表在最新一期的《自然》杂志上。 随着计算机的运行速度不断加快以及芯片变得越
陈刚教授团队拓扑保护边界态输运研究获进展
近日,山西大学激光光谱研究所陈刚教授带领的团队与武汉大学刘正猷教授等合作,在拓扑边界态输运方面取得了重要进展。通过堆垛具有交错在位能的双层六角晶格,引入二聚型层间耦合,在国际上首次实验证实了基于铰链态的三维鲁棒输运。相关成果题为“3D Hinge Transport in Acoustic H
福建限制新建水电项目保护流域水质
福建省近年调研证实,不合理的产业布局、过度的水电开发是制约流域水质改善的重要原因。日前正式施行的《福建省流域水环境保护条例》规定,严格限制在流域内新建水电项目,并要求科学制定水电站最小生态下泄流量。 水电是福建省最主要的电力能源,目前在该省闽江等干支流已建成的水电站达
南开大学在拓扑光子学领域取得新进展
从数学到化学、生物学,再到凝聚态物理、光学,与拓扑相关的现象俯拾皆是。拓扑的概念拓展到光学,形成了拓扑光子学这一新兴研究领域,近几年不断开拓,蓬勃发展。 最近,高阶拓扑绝缘体(HOTI)由于其打破了传统的体边对应关系,在光学和光子学领域也引发了研究热潮,有望为开发新一代半导体激光等光学器件带来
什么是波导色散?
波导色散:对于光纤的某一传输模式,在不同的光频下的群速度不同引起的脉冲展宽。它与光纤结构的波导效应有关,因此也被称为结构色散。
三维光学拓扑绝缘体研制成功-有望建成光子的“高速公路”
日前,浙江大学信息与电子工程学院教授陈红胜课题组成功研制出首个三维光学拓扑绝缘体,将三维拓扑绝缘体从费米子体系扩展到了玻色子体系,有望大幅度提高光子在波导中的传输效率。研究成果今日于《自然》杂志正式发表。 这项研究由浙江大学陈红胜教授课题组和新加坡南洋理工大学教授Baile Zhang、Yid
南开团队在子空间对称性保护拓扑态的研究取得新突破
原文地址:http://news.sciencenet.cn/htmlnews/2023/4/498785.shtm拓扑学本是一门研究物体几何特性的数学分支,在物理学中却可以利用拓扑的概念描述物质的能带特征,从而研究新颖拓扑物态和各种新生的拓扑材料。非平凡拓扑最典型的特征就是存在受特定对称性保护的拓
“捕获彩虹”技术有望让光线停止
《自然》:为光数据的存储、传输和处理带来新希望 如何才能真正捕获光线?英国科学家的一项最新研究,从理论上提出了让光线减速到停滞的方法。相关论文发表在11月15日的《自然》杂志上。 图片说明:不同波长的光线能够被特殊波导的不同位置捕获,形成彩虹。(图片来源:B. STAROSTA) 英国萨里大
厦大团队研制成功拓扑自旋固态光源芯片
厦门大学半导体研究团队教授康俊勇、张荣、吴雅苹提出轨道调控的拓扑自旋保护新原理,首次生长出室温零场下本征稳定、长程有序的磁半子(Meron)晶格,并研制成功拓扑自旋固态光源芯片(T-LED)。7月13日,相关研究成果在《自然—电子学》上发表,该成果首次实现了从拓扑保护准粒子到费米子乃至玻色子的手性传
毫米波GAP波导
The gap waveguide is built up of two parts: a structured metal surface and a flat metal surface being placed in close proximity to one another. Th
光子拓扑自旋态研究新成果拓展光的拓扑学研究范畴
拓扑缺陷在物理学上通常指场分布无法连续形变、物理量无法定义的特殊点,也称为奇点,在涡旋或拓扑结构中普遍存在。拓扑缺陷在宇宙学、流体动力学、空气动力学、声学以及生物学等领域也十分常见,并在某些应用中起着重要作用。 近年来,探索拓扑结构的电磁类比在光学和光子学中引起了极大兴趣。在集成光子学领域,微
x光线是什么
X光是一种射线,就是人们常说的X射线,是一种有能量的电磁波或辐射。当高速移动的电子撞击任何形态的物质时,X光便有可能发生。X光具有穿透性,对不同密度的物质有不同的穿透能力。在医学上X光用来投射人体形成影像,用来辅助诊断或照射病灶用于治疗。它的发现者:是德国物理学家W.K.伦琴。其特点:波长非常短,频
多孔核心光子晶体光纤引导偏振保持太赫兹波
高度双折射和接近零色散平坦的光子晶体光纤为低损耗成像和传感应用提供太赫兹波。 光子晶体光纤(PCF)也称为微结构光纤(MOF) ,是一类不同类型的光纤,特别适用于传感,生物医学成像,时域光谱学,安全性,DNA杂交和癌症检测领域的应用,并在光通信。 与传统光纤不同,PCF提供高双折射和可控色
多孔核心光子晶体光纤引导偏振保持太赫兹波
光子晶体光纤(PCF)也称为微结构光纤(MOF) ,是一类不同类型的光纤,特别适用于传感,生物医学成像,时域光谱学,安全性,DNA杂交和癌症检测领域的应用,并在光通信。 与传统光纤不同,PCF提供高双折射和可控色散。实芯PCF经历大量材料损失,不适用于太赫兹信号传输,而空心PCF限制电磁波的传播距离
限制[性酶切]位点保护试验的方法和应用
中文名称限制[性酶切]位点保护试验英文名称restriction site protection experiment定 义当一段DNA被某些蛋白质(如转录因子、组蛋白等)结合后,这段DNA上的限制性酶切位点就不会被相应的限制性酶切开。因此将待研究的DNA与蛋白质一起保温,再用该DNA链上已知的限
5所顶尖高校,再发Science、Nature!
2022年,是中国高校CNS井喷之年。 日前,又有北京大学、浙江大学、南京大学、西安交通大学、武汉大学等多所顶尖高校,再添Science、Nature。 北京大学 2022年5月12日,北京大学伊成器团队在Nature 在线发表题为“Mitochondrial base editor in
共面波导结构如何定义端口?
无地的共面波导的端口定义最好采用waveport,端口尺寸如图1.2所示,注意,端口一定要将介质下面的空气包含一部分;有地的共面波导的端口定义比较类似,但是端口的下边一定不要跨越下面的地平面。
“人造原子”组成完美晶格
因为可以组织成看起来像分子的结构,一些世界上最小的晶体被称为人造原子,包括作为新材料潜在构件的超晶格。 现在,来自斯坦福大学的科学家首次观察到纳米晶体迅速形成超晶格并不断增长的过程。他们的发现将有助于科学家微调装配工艺,使其适应新型材料,如磁存储、太阳能电池、光电子以及加速化学反应的催化剂
拓扑世界“新交规”!我国学者提出新型类脑计算方案
7日,记者从南京大学获悉,该校物理学院缪峰教授、梁世军副教授团队联合南京理工大学程斌教授通过构筑特殊堆垛构型的魔角石墨烯器件,观测到电子型铁电性与拓扑边界态的共存,并基于可选择的准连续铁电开关,首次提出了噪声免疫的类脑计算方案,该工作为开发基于拓扑边界态的新型低功耗电子器件开辟了全新的技术路线。相关
研究成果:拓扑相光学调控攻关成功
北京量子信息科学研究院“超快光谱学”团队负责人、清华大学教授熊启华课题组和新加坡南洋理工大学合作,开展了“钙钛矿极化晶格中拓扑相的光学调控”攻关,相关成果近日发表在Science Advances上。 拓扑绝缘体是一类新奇的量子物态,展现出内部绝缘、表面或边界导电的特征,同时其表面或边界态具有
Science-Advances:铁电超晶格中发现周期性电偶极子波
拓扑极化结构自身具有拓扑保护性,在信息处理、传输、存储等方面具有重要的应用价值。然而,铁电材料中的极化拓扑结构一般都包含本体对称性不允许的连续极化旋转。如何解决铁电极化与晶格应变的相互制约的问题,实现极化反转与晶格应变的有效调控,获得有望用于超高密度信息存储的结构单元,是当今铁电材料领域面临的一
基于简并腔中涡旋光子的拓扑量子模拟实现
中国科学技术大学郭光灿院士团队李传锋、许金时、韩永建等人将携带不同轨道角动量的光子(又称为涡旋光子)束缚在简并光学谐振腔内,通过引入光子的自旋轨道耦合人工合成了一维的拓扑晶格,为拓扑量子模拟开创了一种新的方法。研究成果4月19日发表于《自然-通讯》。实验装置与理论模型示意图:a. 简并光学谐振腔b.
光线强弱影响人脑发育
据美国科学促进会(AAAS)网站报道,最新科学研究发现,生活在不同纬度的人脑袋大小有较大差异,而生活在地球极地附近的人脑袋最大。 长期以来,相比地球的赤道地区,地球极地的白天越来越短、越来越暗,因此,生活在地球最北部和最南部地区的人看上去进化了许多猫头鹰的特质。研究