能量色散X射线荧光光谱仪信号处理系统研究
近几十年来,X射线荧光光谱仪不断的发展和完善,并且X射线荧光分析技术的应用领域越来越广泛,不仅在地质、矿物、石油等领域被广泛应用,在化工、医疗等领域也大放异彩。现代能量色散X射线荧光(EDXRF)光谱仪的主要组成部分有:X射线发生器(X射线管、高压电源)、检测系统(准直器、探测器)、信号处理电路(放大、滤波电路)和记录计数系统(多道分析器)。EDXRF光谱仪测定试样中多种成分的特征X射线光谱能量和强度,在不毁坏样品结构的情况下同时对样品中的多种元素成分做出定性分析和定量分析。本文充分依托近现代X射线分析技术的研究成果和精华,设计一款实验室台式能量色散X射线荧光光谱仪。本文使用能量分辨率高、性能好的电制冷Si-PIN半导体探测器,采用稳定性好、分析范围宽的X射线管作为激发源,并根据理论分析与实验验证相结合确定“源-样-探”的最佳几何探测光路,显著提高光谱仪的探测效率和检出限;设计了可直接与探测器输出相连的整形放大电路,提高光谱仪的......阅读全文
能量色散X射线荧光光谱仪信号处理系统研究
近几十年来,X射线荧光光谱仪不断的发展和完善,并且X射线荧光分析技术的应用领域越来越广泛,不仅在地质、矿物、石油等领域被广泛应用,在化工、医疗等领域也大放异彩。现代能量色散X射线荧光(EDXRF)光谱仪的主要组成部分有:X射线发生器(X射线管、高压电源)、检测系统(准直器、探测器)、信号处理电路(放
分析X射线荧光光谱仪没有峰位信号的原因
1、探测器的前置放大电路出现故障,出现的噪声信号为电路噪声,不是X射线信号。 2、测角仪的θ和2θ耦合关系发生混乱,通常是控制θ和2θ耦合关系的CMOS中的数据由于电池漏电等原因丢失,这时需要重新对光。
实验室光谱仪器原子荧光光谱仪的试样处理方法
原子光谱法可直接分析固体试样(石墨炉法),但目前仍较多地用于液体试样的分析,原子荧光光谱法更是如此。因而试样的溶解和稀释是必不可少的重要环节,其作用是使试样中的被测组分不受损失,不被污染,全部转变为适宜测定的形式,而且原子光谱分析方法的广泛应用也依赖于分析者制订快速简便的试样溶解和稀释处理的方法,以
原子荧光测量无信号或信号异常
测量无信号或信号异常(所有曲线测量值很小) 1)、仪器电路故障: 判断方法:在灯能量显示处反射,有能量带变化,仪器电路正常。否则,仪器电路不正常。 ★2)、反应系统: 管道堵、漏,水封无水、未进或进不足样品和还原剂(检查进样管路),氢化物未进入原子化器 ★3)、未形成氩氢火焰 还原剂是否现配、还原剂
荧光仪信号小的原因
荧光仪信号小的原因 1.原子化器的高度 2.硼氢化钾的浓度及稳定性 3.蠕动泵及管路的连接与老化程度(是否有漏气) 4.反应器中能否看到酸液(样品溶液)与硼氢化钾作用. 硼氢化钾没有到反应块的话肯定是没有信号的。如有明显的气泡产生,则看看别的方面。 5.HCL的设置情况(位置--灯电流) 6.观察
原子荧光无信号问题
一.原子荧光无信号问题1. 进液不完全,未正常反应。(仅限手动进样方式)观察进样方式是否正确,进样量是否满足定量环要求。2. 标液失效可以配置无机形态的单标,从载流针位置进标液试下是否有信号,如果信号正常,在从六通进样阀位置进样看看。如果没有信号,检查流动相配置是否正确,柱压是否正常
荧光光谱仪的荧光分析特点
(1)荧光分析的主要特点是灵敏度高、选择性好,荧光分析的灵敏度要比吸收光谱测量高2-3个数量级。分光光度法通常在 10-7 级,而荧光的灵敏度达10-9。 (2)强选择性强,荧光物质具有两种特征光谱:激发光谱和吸收光谱,相对于分光光度法单一的吸收光谱来说,荧光光谱可根据激发光谱和发射光谱来鉴定
如何提高荧光光谱仪接收荧光?
如何提高荧光光谱仪接收到的荧光?对于一些物质来说,产生荧光的能力是非常弱,以至一些普通探测器都无法响应。为了使荧光光谱仪能够接收到更多的荧光,往往采用以下几个措施:1、提高激发光的强度:可以用激光器来代替卤素灯源,激光器的功率密度往往比卤素灯高的多。使用该方法,根据激光器功率的不同,荧光有几倍到几个
荧光光谱仪同步荧光分析简介
同步荧光分析。它与常用荧光测定最大的区别是同时扫描激发和发射两个单色器波长,由测得的荧光强度信号与对应的激发波长(或发射波长)构成光谱图,即同步荧光光谱。步荧光分析具有光谱简单,谱带窄、分辨率高、光谱重叠少等优点,可提高选择性,减少散射光等的影响,非常适合多组分混合物的分析,在环境、药物、临床、
荧光倍频峰会随荧光信号减弱而减弱吗
一般来说,扫描荧光光谱应该从波长大于激发光的波长约 5 nm 处作为扫描起点,原因有两点:1) 避免激发光的干扰;2) 从能级上来看,荧光光谱不可能在小于激发波长的位置采集到信号.因为激发光的能量决定了将分子中的电子激发至能跃迁到的最高能级,因此,从这个能级向下跃迁而发出的荧光波长不可能小于激发光的
荧光光谱仪和稳态荧光光谱仪有什么区别
所用光源一般为氙灯,其激发为连续波,对于荧光物质来说其测得发射和激发可称作稳态荧光光谱,如光源为脉冲激光的荧光光谱仪可称作瞬态荧光光谱,在这里荧光光谱仪可能范围更广一些
数字信号处理器的处理速度
处理器是否符合设计要求,关键在于是否满足速度要求。测试处理器的速度有很多方法,最基本的是测量处理器的指令周期。 但是指令执行时间并不能表明处理器的真正性能,不同的处理器在单个指令完成的任务量不一样,单纯地比较指令执行时间并不能公正地区别性能的差异。一些新的DSP采用超长指令字(VLIW)架构,
简介组成X射线荧光光谱仪信号链的四大子系统
1、X射线管X 射线管是工作在高电压下的真空二极管,其包含有两个电极:一个是用于发射电子的灯丝,作为阴极;另一个是用于接受电子轰击的靶材,作为阳极。两级均被密封在高真空的玻璃或陶瓷外壳内。施加到该灯丝上的电流使其加热至1000摄氏度,因此它能发射出电子。一旦灯丝发射出电子,在灯丝和阳极之间施加高电压
荧光光谱仪原理
荧光分析法的基本原理处于基态的被测物质的分子在吸收适当能量,如光、化学、物理能后,其共价电子从成键分子轨道或非键分子轨道跃迁到反键分子轨道上去,形成分子激发态。分子激发态不稳定,将很快衰变到基态。在分子激发态返回到基态的同时常伴随着光子的辐射。这种现象就是发光现象。荧光则属于分子的光致发光现象。二、
荧光光谱仪原理
荧光分析法的基本原理处于基态的被测物质的分子在吸收适当能量,如光、化学、物理能后,其共价电子从成键分子轨道或非键分子轨道跃迁到反键分子轨道上去,形成分子激发态。分子激发态不稳定,将很快衰变到基态。在分子激发态返回到基态的同时常伴随着光子的辐射。这种现象就是发光现象。荧光则属于分子的光致发光现象。二、
荧光光谱仪原理
荧光分析法的基本原理处于基态的被测物质的分子在吸收适当能量,如光、化学、物理能后,其共价电子从成键分子轨道或非键分子轨道跃迁到反键分子轨道上去,形成分子激发态。分子激发态不稳定,将很快衰变到基态。在分子激发态返回到基态的同时常伴随着光子的辐射。这种现象就是发光现象。荧光则属于分子的光致发光现象。二、
荧光光谱仪原理
荧光分析法的基本原理处于基态的被测物质的分子在吸收适当能量,如光、化学、物理能后,其共价电子从成键分子轨道或非键分子轨道跃迁到反键分子轨道上去,形成分子激发态。分子激发态不稳定,将很快衰变到基态。在分子激发态返回到基态的同时常伴随着光子的辐射。这种现象就是发光现象。荧光则属于分子的光致发光现象。二、
荧光光谱仪原理
X射线光谱仪(rohs检测仪)通常可分为两大类,波长色散X射线荧光光谱仪(WDXRF)和能量色散X射线荧光光谱仪(EDXRF),波长色散光谱仪主要部件包括激发源、分光晶体和测角仪、探测器等,而能量色散光谱仪则只需激发源和探测器和相关电子与控制部件,相对简单。 波长色散X射线荧光光谱仪使用分析晶
荧光光谱仪原理
目前荧光分析法已经发展成为一种重要且有效的光谱化学分析手段。在我国,50年代初期仅有极少数的分析化学工作者从事荧光分析方面的研究工作,但到了70年代后期,荧光分析法已引起国内分析界的广泛重视,在全国众多的分析化学工作者中,已逐步形成一支从事这一领域工作的队伍。 一、荧光分析特点 (1)荧光分
荧光光谱仪结构
荧光光谱仪(荧光分光光度计)是测量荧光的仪器,主要由光源、激发单色器、样品池、发射单色器和检测器等组成。(1)光源由于荧光样品的荧光强度与激发光的强度成正比,因此,作为一种理想的激发光源应具备:足够的强度、在所需光谱范围内有连续的光谱、强度与波长无关(即光源的输出是连续平滑等强度的辐射)、稳定的光强
荧光光谱仪原理
荧光分析法的基本原理处于基态的被测物质的分子在吸收适当能量,如光、化学、物理能后,其共价电子从成键分子轨道或非键分子轨道跃迁到反键分子轨道上去,形成分子激发态。分子激发态不稳定,将很快衰变到基态。在分子激发态返回到基态的同时常伴随着光子的辐射。这种现象就是发光现象。荧光则属于分子的光致发光现象。二、
荧光光谱仪原理
荧光分析法的基本原理处于基态的被测物质的分子在吸收适当能量,如光、化学、物理能后,其共价电子从成键分子轨道或非键分子轨道跃迁到反键分子轨道上去,形成分子激发态。分子激发态不稳定,将很快衰变到基态。在分子激发态返回到基态的同时常伴随着光子的辐射。这种现象就是发光现象。荧光则属于分子的光致发光现象。二、
荧光光谱仪分类
按荧光原理可分:原子荧光光谱仪、分子荧光光谱仪和X射线荧光光谱仪等。 原子荧光光谱仪是通过测量待测元素的原子蒸气在辐射能激发下所产生的荧光发射强度,来测定待测元素含量的仪器。原子荧光激发光源一般为高强度空心阴极灯或无极放电灯一般原子荧光光度计用来对各类样品中痕量的铅、汞、砷、锗、锡、硒、碲、铋
荧光光谱仪原理
荧光光谱仪由激发光源、单色器、狭缝、样品室、信号检测放大系统和信号读出、记录系统组成。激发光源提供用于激发样品的入射光的来源。单色器用来分离出所需要的单色光。信号检测放大系统用来把荧光信号转化为电信号,结合放大系统上的读出装置可显示或记录荧光信号。一.激发光源因为物质的荧光强度与激发光的强度成正比,
荧光光谱仪原理
荧光分析法的基本原理处于基态的被测物质的分子在吸收适当能量,如光、化学、物理能后,其共价电子从成键分子轨道或非键分子轨道跃迁到反键分子轨道上去,形成分子激发态。分子激发态不稳定,将很快衰变到基态。在分子激发态返回到基态的同时常伴随着光子的辐射。这种现象就是发光现象。荧光则属于分子的光致发光现象。二、
荧光光谱仪简介
结构 由光源、激发光源、发射光源、试样池、检测器、显示装置等组成。 分类 荧光光谱仪可分为 X射线荧光光谱仪和分子荧光光谱仪。 主要用途 1.荧光激发光谱和荧光发射光谱 2.同步荧光(波长和能量)扫描光谱 3.3D(Ex Em Intensity) 4.Time Base和CWA
位移传感器信号处理
辨向原理 在实际应用中,位移具有两个方向,即选定一个方向后,位移有正负之分,因此用一个光电元件测定莫尔条纹信号确定不了位移方向。为了辨向,需要有π/2相位差的两个莫尔条纹信号。如图2,在相距1/4条纹间距的位置上安放两个光电元件,得到两个相位差π/2的电信号u01和u02,经过整形后得到两个方
位移传感器信号处理
在实际应用中,位移具有两个方向,即选定一个方向后,位移有正负之分,因此用一个 光电元件测定莫尔条纹信号确定不了位移方向。为了辨向,需要有 π/2相位差的两个莫尔条纹信号。如图2,在相距1/4条纹间距的位置上安放两个光电元件,得到两个相位差π/2的电信号u01和u02,经过整形后得到两个方波信号u
怎么才能获得原子荧光信号
原子荧光光谱(AFS):典型原子荧光检测过程是以氢化物/冷蒸气发生方式实现样品的导入,氩氢扩散火焰原子化器实现被测元素的原子化,自由原子被空心阴极灯激发后发射的原子荧光,以无色散光路被 光 电 倍 增 管 接 收,获 得 原 子 荧 光 信 号。
时间分辨荧光免疫分析信号原理
普通物质荧光光谱分为激发光谱和发射光谱,在选择荧光物质作为标记物时,必须考虑激发光谱和发射光谱之间的波长差,即Stokes位移的大小。如果Stokes位移小,激发光谱和发射光谱常有重叠,相互干扰,影响检测结果的准确性。镧系元素的荧光光谱有较大的Stokes位移,最大可达290nm,激发光谱和发射